Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:24:55.623Z Has data issue: false hasContentIssue false

Synthesis and Properties of Monometallic and Bimetallic Silver and Gold Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Xavier Enrique Guerrero Dib
Affiliation:
[email protected], Universidad del Valle de México, Ingeniería, Monterrey, Mexico
Ubaldo Ortiz-Méndez
Affiliation:
[email protected], Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, Mexico
Selene Sepúlveda-Guzmán
Affiliation:
[email protected], Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, Mexico
Oxana Vasilievna Kharisova
Affiliation:
[email protected], Universidad Autónoma de Nuevo León, FCFM, San Nicolás de los Garza, Nuevo León, Mexico
Domingo Ferrer
Affiliation:
[email protected], University of Texas at Austin, Chemical Engineering, Austin, Texas, United States
Miguel José-Yacamán
Affiliation:
[email protected], University of Texas at San Antonio, Chemical Enginnering, San Antonio, Texas, United States
Get access

Abstract

Synthesis of Au, Ag monometallic, and Au-Ag bimetallic nanoparticles have been synthesized by successive reduction of metal salts with ascorbic acid on prefabricated seeds in the presence of cetyltrimethylammonium bromide (C16H33)N(CH3)3Br (CTAB), as a cationic surfactant, is presented in this paper. This coverage method for the prefabricated seeds is uniform, although in some cases deviations from a spherical shape are observed with the formation of nanorods or nanoprisms. Results using high-resolution STEM-XEDS elemental mapping suggest that the actual distribution of the two metals within the multilayer spheres may involve partial alloying of the metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Hermans, S.; Jones, M. D.; Khimyak, T.; Ind. Eng. Chem. Res.; 2003; 42, 1563.Google Scholar
2 Bronstein, L. M.; Chernyshov, D. M.; Volkov, I. O.; Ezernitskaya, M. G.; Valetsky, P. M.; Matveeva, V. G.; Sulman; E. M. J. Catal.; 2000; 196, 302.Google Scholar
3 Mulvaney, P.; Giersig, M.; Henglein, A. J. Phys. Chem.; 1992; 96, 10419.Google Scholar
4 Mulvaney, P.; Langmuir; 1996; 12, 788.Google Scholar
5 Chushak, Y. G.; Bartell, L. S.; J. Phys. Chem B.; 2003; 107, 3747. Google Scholar
6 Mulvaney, P.; Langmuir.; 1996; 12, 788.Google Scholar
7 Link, S., Wang, Z. L. and El-Sayed, M. A.; J. Phys. Chem. B; 1999; 103, 3529.Google Scholar
8 Rodríguez-González, B., Sánchez-Iglesias, A., Giersig, M. and Liz-Marzán, L. M., Faraday Discuss.; 2004; 125, 133.Google Scholar
9 Liz-Marzán, L. M., Mater. Today; 2004; 7, 26.Google Scholar
10 Cao, E., Schatz, G. C. and Hupp, J. T., J. Fluoresc.; 2004; 14, 331.Google Scholar
11 Liz-Marzán, L. M. and Mulvaney, P.; J. Phys. Chem. B; 2003; 107, 7312.Google Scholar
12 Mulvaney, P. and Underwood, S.; Langmuir; 1994; 10, 3427.Google Scholar
13 Ung, T., Dunstan, D., Giersig, M. and Mulvaney, P.; Langmuir; 1997; 13, 1773.Google Scholar
14 Liz-Marzán, L. M. and Mulvaney, P.; New J. Chem.; 1998; 22, 1285.Google Scholar
15 Mallin, M. P. and Murphy, C. J.; Nano Lett.; 2002; 2, 1235.Google Scholar
16 Mulvaney, P., Giersig, M. and Henglein, A.; J. Phys. Chem.; 1993; 97, 7061.Google Scholar
17 Rivas, L., Sánchez-Cortés, S., García-Ramos, J. V. and Morcillo, G.; Langmuir; 2000; 16, 9722.Google Scholar
18 Srnova'-Sloufova, I., Lednicky, F., Gemperle, A. and Gemperlova, J.; Langmuir; 2000; 16, 9928.Google Scholar
19 Schierhorn, M. and Liz-Marzan, L. M.; Nano Lett.; 2002; 2, 13.Google Scholar
20 Sun, Y. and Xia, Y., Adv. Mater.; 2004; 16, 264.Google Scholar
21 Sun, Y., Wiley, B., Li, Z.-Y. and Xia, Y.; J. Am. Chem. Soc.; 2004; 126, 9399.Google Scholar
22 Turkevich, J., Stevenson, P. C. and Hillier, J.; Discuss. Faraday Soc.; 1951; 55.Google Scholar
23 Srnova'-Sloufova, I., Vlckova, B., Bastl, Z. and Hasslett, T. L.; Langmuir; 2004; 20, 3407.Google Scholar
24 Sun, Y. and Xia, Y.; Nano Lett.; 2003; 2, 481.Google Scholar
25 Oldenburg, S. J., Jackson, J. B., Westcott, S. L. and Halas, N. J.; Appl. Phys. Lett.; 1999; 75, 2897.Google Scholar
26 Jana, J. R., Gearheart, L. and Murphy, C. J.; Adv. Mater.; 2001; 13, 1389.Google Scholar
27 Pérez-Juste, J., Liz-Marzán, L. M., Carnie, S., Chan, D. Y. C. and Mulvaney, P.; Adv. Funct. Mater.; 2004; 14, 571.Google Scholar
28 Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C. and Zheng, J. C.; Science; 2001; 294, 1901.Google Scholar
29 Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A. and Liz-Marzán, L. M.; Langmuir; 2002; 18, 3694.Google Scholar
30 Malinowski, E. R., Factor Analysis in Chemistry, 3rd edn.; Wiley, New York; 2002.Google Scholar