Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:52:24.114Z Has data issue: false hasContentIssue false

Surface Preparation of Single Crystals for ZnO Homoepitaxy

Published online by Cambridge University Press:  01 February 2011

Christian Neumann
Affiliation:
[email protected], Justus-Liebig-Universitaet Giessen, I. Physikalisches Institut, Heinrich-Buff-Ring 16, Giessen, 35392, Germany
Stefan Lautenschläger
Affiliation:
[email protected], Justus-Liebig-Universitaet Giessen, I. Physikalisches Institut, Giessen, 35392, Germany
Swen Graubner
Affiliation:
[email protected], Justus-Liebig-Universitaet Giessen, I. Physikalisches Institut, Giessen, 35392, Germany
Niklas Volbers
Affiliation:
[email protected], Justus-Liebig-Universitaet Giessen, I. Physikalisches Institut, Giessen, 35392, Germany
Bruno K Meyer
Affiliation:
[email protected], Justus-Liebig-Universitaet Giessen, I. Physikalisches Institut, Giessen, 35392, Germany
Jürgen Bläsing
Affiliation:
[email protected], Otto-von-Guericke-Universität Magdeburg, Institut für Experimentalphysik, Magdeburg, 39106, Germany
Alois Krost
Affiliation:
[email protected], Otto-von-Guericke-Universität Magdeburg, Institut für Experimentalphysik, Magdeburg, 39106, Germany
Get access

Abstract

For the homoepitaxial growth of ZnO it is inevitable to obtain a regular crystalline single crystal surface prior to growth. Commercially available, hydrothermally grown ZnO single crystals show amorphous surfaces due to mechanical cutting and polishing. Here we present the results of a thermal treatment on these ZnO single crystals. After annealing, a regular crystalline oxygen terminated surface can be obtained. Changes in surface roughness, residual defect concentration and electrical properties can be shown. The bulk crystallinity though was not affected.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohnishi, T., Ohtomo, A., Kawasaki, M., Takahashi, K., Yoshimoto, M., Koinuma, H., Appl. Phys. Lett. 72, 824 (1998)Google Scholar
2. Kato, H., Sano, M., Miyamoto, K., Yao, T., J. Cryst. Growth 265, 375 (2004)Google Scholar
3. Hirschwald, W., Stolze, F., Z. Phys. Chem. 77, 21 (1972)Google Scholar
4. Ko, H.J., Han, M.S., Park, Y.S., Yu, Y.S., Kim, B.I., Kim, S.S., Kim, J.H., J. Cryst. Growth 269, 493 (2004)Google Scholar
5. Ohashi, N., Ohgaki, T., Sugimura, S., Maeda, K., Sakaguchi, I., Ryoken, H., Niikura, I., Sato, M., Haneda, H., Mat.Res.Symp.Proc. 799, Z5.40.1 (2004)Google Scholar
6. Sann, J., Hofstaetter, A., Pfisterer, D., Stehr, J., Meyer, B.K., phys. stat. sol (c) 4, 952 (2006)Google Scholar