Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:39:23.877Z Has data issue: false hasContentIssue false

Substrate Heating Measurements in Pulsed Ion Beam Film Deposition

Published online by Cambridge University Press:  21 February 2011

J. C. Olson
Affiliation:
Los alamos National Laboratory, MS-E526, Los alamos, NM 87544
M. O. Thompson
Affiliation:
aterials Science and Engineering Department, Cornell University, Ithaca, NY 14853
H. A. Davis
Affiliation:
Los alamos National Laboratory, MS-E526, Los alamos, NM 87544
D. J. Rej
Affiliation:
Los alamos National Laboratory, MS-E526, Los alamos, NM 87544
W. J. Waganaar
Affiliation:
Los alamos National Laboratory, MS-E526, Los alamos, NM 87544
D. R. Tallant
Affiliation:
Sandia National Laboratories, P. O. Box 5800, albuquerque, NM 87185-0343
Get access

Abstract

Diamond-like Carbon(DLC) films have been deposited at Los alamos National Laboratory by pulsed ion beam ablation of graphite targets. the targets are illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm2. Ion energies are on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse.

Raman spectra of the deposited films indicate an increasing ratio of sp3 to sp2 bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at various positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. Plume power density and energy input are inferred from the temperature measurements. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Davis, H. A., Johnston, G. P., Rej, D. J., Waganaar, W. J., Ruiz, C. L., and Schmidlapp, F. A., in Proceedings of the Tenth international Conference on High-Power Particle Beams(NTIS PB95-144317), edited by Rix, W. and White, R. (National Technical information Service, Springfield, VA, 1994), pp. 226231.Google Scholar
2 Rej, D. J., Bartsch, R. R., Davis, H. A., Faehl, R. J., Greenly, J. B., and Waganaar, W. J., The Review of Scientific instruments 64, 2753 (1993).Google Scholar
3 Brunco, D. P., Kittl, J. A., Otis, C. E., Goodwin, P. M., Thompson, M. O., and Aziz, M. J., The Review of Scientific instruments 64, 2615 (1993).Google Scholar
4 Kittl, J. A., Reitano, R., Aziz, M. J., Brunco, D. P., and Thompson, M. O., Journal of applied Physics 73, 3725 (1993).Google Scholar
5 Brunco, D. P., Thompson, M. O., Otis, C. E., and Goodwin, P. M., Journal of applied Physics 72, 4344 (1992).Google Scholar
6 Tsao, J. Y., Picraux, S. T., Peercy, P. S., and Thompson, M. O., Applied Physics Letters 48, 278 (1986).Google Scholar
7 Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., and Hammond, R. B., Applied Physics Letters 42, 445 (1983).Google Scholar
8 Johnston, G. P., Tiwari, P., Rej, D. J., Davis, H. A., Waganaar, W. J., Muenchausen, R. E., Walter, K. C., Nastasi, M., Schmidt, H. K., Kumar, N., Lin, B., Tallant, D. R., Simpson, R. L., Williams, D. B., and Qiu, X., Journal of applied Physics 76, 5949 (1994).Google Scholar
9 Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., Journal of applied Physics 70, 1706 (1991).Google Scholar