Published online by Cambridge University Press: 15 February 2011
Selective Epitaxial Growth of silicon through windows in SiO2 using low-temperature SiH2Cl2/H2 chemistry in a hot wall LPCVD system was used to form Epitaxial Lateral Overgrowth (ELO) regions of Silicon-on-insulator. In cases where pattern ‘width was less than two times epi film thickness, the ELO regions merged to form a continuous epitaxial film. In this study, 2.5 μm thick single crystal silicon layers were grown perfectly over oxide regions with very low dislocation density (< 104/cm2). The epitaxial Si/oxide interfaces were smooth and defect-free. However, a “seam”-like defect was occasionally observed in the epitaxial film on top of the oxide, at the locations where two growth fronts merged together. This crystallographic defect in some case extends through the whole Silicon-on-Oxide film and would be expected to be detrimental to electronic devices built on or close to it. The sturctures of these seam line defects were investigated in detail by transmission electron Microscopy (TEM). The formation mechanisms of these seam line defects and possible origins are discussed.