Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T03:37:54.961Z Has data issue: false hasContentIssue false

Structures and Properties of an Ultra-Low-k Material: Classical-molecular-dynamics and First-principles Calculations

Published online by Cambridge University Press:  01 February 2011

Jiro Ushio
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
Tomoyuki Hamada
Affiliation:
[email protected], University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
Takahisa Ohno
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
Shin-Ichi Nakao
Affiliation:
[email protected], Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
Katsumi Yoneda
Affiliation:
[email protected], Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
Manabu Kato
Affiliation:
[email protected], Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
Nobuyoshi Kobayashi
Affiliation:
[email protected], Semiconductor Leading Edge Technologies, Inc., 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
Get access

Abstract

We determined the most probable atomistic structure of an ultra-low-k material (k≅ 2.5) by computer simulations. Among the candidate structures generated by a molecular-dynamics calculation, the most probable one that reproduces the observed properties was selected using a first-principles density-functional-theory calculation. The candidate structures consisted of Si-O-Si network with some silicon atoms, each of which had a CH3 group or a hydrogen atom bonded. The structure with CH3 groups but no hydrogen atom reproduced the experimental properties best. This structure was then used to investigate the behaviors of the material irradiated with ultraviolet light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ciaramella, F., Jousseaume, V., Maitrejean, S., Verdier, M., Reimiat, B., Zenasni, A., and Passemard, G., Thin Solid Films, 495, 124 (2006).Google Scholar
2 Tyberg, C., Huang, E., Hedrick, J., Simonyi, E., Gates, S., Cohen, S., Malone, K., Wickland, H., Sankarapandian, M., Toney, M., Kim, H. –C., Miller, R., Volksen, W., Rice, P., and Lurio, L., in Polymers for Microelectronics and Nanoelectronics, edited by Lin, Q., Pearson, R. A., and Hedrick, J. C., (ACS Symposium Series 874, Washington, DC, 2004) pp.161172.Google Scholar
3 Tajima, N., Hamada, T., Ohno, T., Yoneda, K., Kobayashi, N., Hasaka, T., and Inoue, M., in Proc. of the 2005 Int. Interconnect Technology Conf. (IEEE Press, New Jersey, 2005) pp. 6668.Google Scholar
4 , Tinker, Software Tools for Molecular Design, Version 3.9: Ponder, J. W. (Washington University, School of Medicine, 2001).Google Scholar
5 Kato, M., Yoneda, K., Nakao, S., Kondo, S., Kobayashi, N., Matsuki, N., Matsushita, K., Ohara, N., Fukazawa, A., Ikegawa, T., and Kimura, T., in Ext. Abst. ADMETA 2005 (Advanced Metallization Conf. 2005, Asian Session, Tokyo, 2005) p. 18.Google Scholar
6 UVSOR, computer code for DFT dielectric response studies (FSIS project,University of Tokyo, Japan, 2005).Google Scholar
7 Grill, A. and Neumayer, D. A., J. Appl. Phys. 94, 6697 (2003).Google Scholar
8 Yoneda, K., Kato, M., Kobayashi, N., Matsuki, N., Matsushita, K., Ohara, N., Fukazawa, A., and Kimura, T., in Proc. of the 2005 Int. Interconnect Technology Conf. (IEEE Press, New Jersey, 2005) p. 220.Google Scholar