Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:08:05.865Z Has data issue: false hasContentIssue false

Structure-Property Relationships and Deformation Mechanisms in an Orthorhombic Based Ti-25Al-17Nb Alloy

Published online by Cambridge University Press:  22 February 2011

B. S. Majumdar
Affiliation:
UES, Inc., Dayton, Ohio-45432
C. Boehlert
Affiliation:
UES, Inc., Dayton, Ohio-45432
A. K. Rai
Affiliation:
UES, Inc., Dayton, Ohio-45432
D. B. Miracle
Affiliation:
Wright Laboratory Materials Directorate, WPAFB, Dayton, Ohio- 45433
Get access

Abstract

The microstructure-property relations were evaluated for a nominally Ti-25Al-17Nb orthorhombic alloy, in terms of the deformation and failure mechanisms of the constituent ordered phases (orthorhombic, alpha-2, and B2). The mechanisms were characterized through observation of slip traces, crack initiation sites, and TEM. Properties of interest were the room temperature elongation, fatigue crack growth (FCG) resistance, and creep resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Banerjee, D., Gogia, A.K., Nandy, T.K., and Joshi, V.A., Acta Metall., 36 (1988), pp. 871882.Google Scholar
2. Banerjee, D., Nandy, T.K., and Gogia, A.K., Scripta Metall., (1987), p597.Google Scholar
3. Majumdar, B.S. and Newaz, G.M., Isothermal Fatigue Mechanisms in Ti-Based Metal Matrix Composites, NASA Report No. NASA-CR-191181, NASA LeRC (1993)Google Scholar
4. Balsone, S.J., Maxwell, D.C., and Broderick, T.F., ASTM STP 1189, (1993) pp.551567.Google Scholar
5. Gogia, A.K.,Nandy, T.K.,Muraleedharan, K., and Banerjee, D., Mat.Sc.Eng., A159 (1992), p.73.Google Scholar
6. Banerjee, D., Gogia, A.K., Nandy, T.K., Muraleedharan, K., and Mishra, R.S., Structural Intermetallics, ed. Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V., TMS (1993), pp. 1933.Google Scholar
7. Boettinger, W., Unpublished research, (1991).Google Scholar
8. Rowe, R.G. et al., Titanium ’92 Science & Technology, Proc. 7th. Ti World Congress, (1993).Google Scholar
9. Lee, D., Jackson, A., Dimiduk, D., Menon, J., and Broderick, T., Unpublished research, (1991)Google Scholar
10. Boehlert, C., Majumdar, B.S., and Miracle, D.B., Fracture of Ordered Intermetallics, Proc. of TMS Fall Symposium, T.S. Srivatsan et al. eds., (in press 1994).Google Scholar
11. Court, S.A., Lofvander, J.P., Loretto, M., and Fraser, H.L., Phil. Mag., Vol. 61, (1990), p. 109.Google Scholar
12. Miracle, D.B., Acta Metall., Vol. 41, No.3, (1993), pp. 649684.Google Scholar
13. Banerjee, D., Rowe, R.G., and Hall, E.L., MRS Symp. Proc., Vol.213, (1991), pp.285290.Google Scholar
14. Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, John Wiley and Sons, New York, (1976).Google Scholar
15. Ravichandran, K.S., FCG Behavior of Ti-Alloys and Intermetallics, AF Rep. WL-TR-94-4030, WPAFB, (March 1994).Google Scholar
16. Nandy, T.K., Mishra, R.S., and Banerjee, D., Scripta Metall., Vol.28, (1993), pp.569574.Google Scholar
17. Cho, W., Thompson, A.W., and Williams, J.C., Metall. Trans., Vol.21A, (1990), pp.641651.Google Scholar