Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T02:07:35.348Z Has data issue: false hasContentIssue false

Structure and Stability of Hydrogen Clathrates of Ammonia Borane

Published online by Cambridge University Press:  31 January 2011

Alexander Abramov
Affiliation:
[email protected], Heriot-Watt University, Chemistry-School of EPS, Edinburgh, Scotland, United Kingdom
Maciej Gutowski
Affiliation:
[email protected], Heriot-Watt University, Chemistry-School of EPS, Edinburgh, United Kingdom
Get access

Abstract

Structural rules have been formulated for the molecular crystal of ammonia borane (AB, NH3BH3) and clathrates thereof. These rules are similar to the “ice rules” in water. Periodic structures of possible clathrates of AB have been predicted. A rigorous analysis of the uniform space filling tessellations of 3D space has been performed resulting in the identification of two promising structures for AB clathrates. Additional five structures have been identified exploiting features and properties of AB molecules. The screening, or evaluation, of proposed periodic structures has been performed on the basis of their stability determined at the density functional level of theory. Hydrogen capacity of the most stable periodic structure (cantitruncated cubic honeycomb) is estimated to be 21 wt%, 19% chemically bound in AB and 2 wt% of H2 physisorbed in the cages of AB.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Felderhoff, M. Weidenthaler, C. Helmolt, R. von, and Eberle, U. Physical Chemistry Chemical Physics 9 2643 (2007).Google Scholar
2. Satyapal, S. Petrovic, J. Read, C. Thomas, G. and Ordaz, G. Catalysis Today 120 246 (2007).Google Scholar
3. Gutowski, M. Abramov, A. Prepr. Pap. – Am. Chem. Soc., Div. Fuel Chem. 54 (2), (2009).Google Scholar
4. Soler, J. M. Artacho, E. Gale, J. D. Garcia, A. Junquera, J. Ordejon, P. and Sanchez-Portal, D., Journal of Physics: Condensed Matter 14 (11), 2745 (2002).Google Scholar
5. Perdew, J. P. Burke, K. Ernzerhof, M. Phys. Rev. Lett. 77 3865 (1996).Google Scholar
6. Møller, C. and Plesset, M. S. Phys. Rev. 46 (7), 618 (1934).Google Scholar
7. Grimme, S. Journal of Computational Chemistry 27 (15), 1787 (2006).Google Scholar
8. Bylaska, E. J. Jong, W. A. de, Govind, N. Kowalski, K. Straatsma, T. P. Valiev, M. Wang, D. Apra, E. Windus, T. L. Hammond, J. Nichols, P. Hirata, S. Hackler, M. T. Zhao, Y. Fan, P.D. Harrison, R. J. Dupuis, M. Smith, D. M. A. Nieplocha, J. Tipparaju, V. Krishnan, M. Wu, Q. Voorhis, T. Van, Auer, A. A. Nooijen, M. Brown, E. Cisneros, G. Fann, G. I. Fruchtl, H. Garza, J. Hirao, K. Kendall, R. Nichols, J. A. Tsemekhman, K. Wolinski, K. Anchell, J. Bernholdt, D. Borowski, P. Clark, T. Clerc, D. Dachsel, H. Deegan, M. Dyall, K. Elwood, D. Glendening, E. Gutowski, M. Hess, A. Jaffe, J. Johnson, B. Ju, J. Kobayashi, R. Kutteh, R. Lin, Z. Littlefield, R. Long, X. Meng, B. Nakajima, T. Niu, S. Pollack, L. Rosing, M. Sandrone, G. Stave, M. Taylor, H. Thomas, G. Lenthe, J. van, Wong, A. and Zhang, Z. “NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1” (2007), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.Google Scholar
9. Grünbaum, B., Geombinatorics 4 49 (1994).Google Scholar
10. Abramov, A. and Gutowski, M. Prepr. Pap.Am. Chem. Soc., Div. Fuel Chem. 55 (1), (2010) (in press).Google Scholar
11. Bernal, J. D. and Fowler, R. H. The Journal of Chemical Physics 1 (8), 515 (1933).Google Scholar
12. Pauling, L. Journal of the American Chemical Society 57 (12), 2680 (1935).Google Scholar
13. Lokshin, K. A. and Zhao, Y. Los Alamos Science 30 138 (2006).Google Scholar