Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T10:33:18.281Z Has data issue: false hasContentIssue false

Structural, hardness and tribological behavior of TiAlNO coatings prepared by sputtering

Published online by Cambridge University Press:  14 April 2016

L. García González
Affiliation:
Universidad Veracruzana, Centro de Investigación en Micro y Nanotecnología, C.P. 94294 Boca del Río, Veracruz, México.
S. R. Vásquez García
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, División de Estudios de Posgrado de la Facultad de Ingeniería Química, Morelia, Michoacán, México
L. Zamora Peredo
Affiliation:
Universidad Veracruzana, Centro de Investigación en Micro y Nanotecnología, C.P. 94294 Boca del Río, Veracruz, México.
A. López Velázquez
Affiliation:
Universidad Veracruzana, Facultad de Ingeniería Mecánica Eléctrica -, Xalapa, Veracruz, México.
L. Domratcheva Lvova
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería en Tecnología de la Madera, Morelia, Michoacán, México.
N. Flores Ramírez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería en Tecnología de la Madera, Morelia, Michoacán, México.
M. G. Garnica Romo
Affiliation:
Universidad Michoacana de San Nicolás Hidalgo, Facultad de Ingeniería Civil, Morelia, Michoacán, México.
T. Hernández Quiroz
Affiliation:
Universidad Veracruzana, Centro de Investigación en Micro y Nanotecnología, C.P. 94294 Boca del Río, Veracruz, México.
J. Hernández Torres
Affiliation:
Universidad Veracruzana, Centro de Investigación en Micro y Nanotecnología, C.P. 94294 Boca del Río, Veracruz, México.
Get access

Abstract

Aluminum titanium oxynitride (TiAlNO) coatings were deposited on 316 steel substrates by the sputtering technique, varying the nitrogen flow from 2.5, 5, 7.5 to 10 sccm, and maintaining constant at 12 sccm the flow argon gas. We used targets of titanium and alumina with 99.995% purity. The hardness and tribological analyses were determined by Vickers microhardness and tribology (tribometer pin-disc), respectively. The results show that the coating with a nitrogen flow of 10 sccm had the lowest volumetric wear (2.047738693 mm3) and the maximum value of hardness (11.2 GPa). Analysis of X-ray diffraction evidenced the presence of three crystalline phases: Ti2N, Al2O3 and TiO2. It can be observed that by increasing the nitrogen flow, the portion of semi-Ti2N phase increases, Al2O3 decreases and TiO2 remains almost constant, and also producing a change in crystallographic orientation with reference to the Ti2N phase. Crystal grain sizes were estimated by X-ray diffraction Fourier line profile analysis using Warren–Averbach method. This analysis showed a grain size between 5 and 15 nm. Raman spectroscopy results show the presence of the TiO2 phase which corroborated the X-ray diffraction results.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Muñoz, W. D., J. Vac. Sci. Technol. A. 4(6), 27172725 (1986).10.1116/1.573713CrossRefGoogle Scholar
Endrino, J. L., Fox-Rabinovich, G. S. and Gey, C., Surf. Coat. Technol. 200(24), 68406845 (2006).10.1016/j.surfcoat.2005.10.030CrossRefGoogle Scholar
Sjölen, J., Karlsson, L., Braun, S., Murdey, R., Hörling, A. and Hultman, L., Surf. Coat. Technol. 201(14), 6392–403 (2007).10.1016/j.surfcoat.2006.12.006CrossRefGoogle Scholar
Kim, H. C. AND Alford, T. L., Thin Solid Films. 449(1–2), 611 (2004).10.1016/S0040-6090(03)01384-1CrossRefGoogle Scholar
Liu, Y., Dong, Y., Zhao, W. and Li, G., Int. J. Refract. Met. H. 25 (3), 271274 (2007).10.1016/j.ijrmhm.2006.07.003CrossRefGoogle Scholar
Mei, F., Dong, Y., Li, Y. and Li, G., Mater. Lett. 60(3), 375378 (2006).10.1016/j.matlet.2005.08.063CrossRefGoogle Scholar
Kunze, Ch., Music, D., Baben, M., Jochen, M. S. and Grundmeier, G., Applied Surface Science 290, 504508 (2014).10.1016/j.apsusc.2013.11.091CrossRefGoogle Scholar
Kawata, K., Sugimura, H. and Takai, O., Thin Solid Films. 390, 6469 (2001).10.1016/S0040-6090(01)00939-7CrossRefGoogle Scholar
Bobzin, k., Nickel, R., Bagcivan, N. and Manz, F. D., Plasma Process. Polym. 4(1), S144S149 (2007).10.1002/ppap.200730507CrossRefGoogle Scholar
Cremer, R., Reichert, K., Neuschütz, D., Erkens, G. and Leyendecker, T., Surf. Coat. Technol. 163–164, 157163 (2003).10.1016/S0257-8972(02)00480-2CrossRefGoogle Scholar
Gassner, G., Mayrhofer, P. H., Kutschej, K., Mitterer, C. and Kathrein, M., Surf. Coat. Technol. 201(6), 33353341 (2006).10.1016/j.surfcoat.2006.07.067CrossRefGoogle Scholar
Korsunsky, A. M., McGurk, M. R., Bull, S. J. and Page, T. F., Surf. Coat. Technol. 99 (1–2), 171183 (1998).10.1016/S0257-8972(97)00522-7CrossRefGoogle Scholar
Porto, S.P.S. and Krishnan, R.S., J. Chem. Phys. 47, 10091020 (1967).10.1063/1.1711980CrossRefGoogle Scholar