Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:23:31.206Z Has data issue: false hasContentIssue false

Structural and Chemical Analysis of Crystal Enamel Nucleation

Published online by Cambridge University Press:  10 February 2011

I. A. Belío-Reyes
Affiliation:
Escuela de Odontología Universidad Autínoma de Sinaloa., MEXICO Facultad de Odontologia, UNAM.Division de Estudios de Posgrado. Circuito Interior, Ciudad Universitaria. Coyoacán, 04510 México D.F., MEXICO. 01000. MEXICO
L. F. JimÉNez-García
Affiliation:
Facultad de Ciencias, UNAM. Circuito Exterior, Ciudad Universitaria. Coyoacán, 04510 Mexico D.F., MEXICO
J. Reyes-Gasga
Affiliation:
Instituto de Física UNAM. Circuito de la Investigación Cientifica, Ciudad Universitaria. Coyoacán, 04510 México D.F.Apartado Postal 20-364 México, DF.
Get access

Abstract

The aim of the present study is to obtain structural and chemical information about nucleation and growth of dental enamel as a function of location in secretory mouse foetus enamel. Then enamel tissues were obtained from 19-days-mouse foetus. TEM images show that enamel crystallites had the well-documented thin ribbons, or needles. They were found in the outermost zone in the vicinity of ameloblasts. Chemical analysis by EDS showed that, besides the elements of hydroxyapatite, Na, Cl, Al and Mg are presents from the beginning of enamel mineralization. All of these elements will play an important role on the physics and chemical properties in mature enamel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Geros, R. Z. Le, Calcium phosphates in oral biology and medicine, Myers, Howard M., Ed., San Francisco California. 1991.Google Scholar
2. Eanes, F.D., J. Dent. Res. 58 (1979) 829834.Google Scholar
3. Brown, W.E., Schroeder, L.R. W., and Ferris, J.S., J. Phys. Chem. 1979: 1385.Google Scholar
4. Nelson, D.G.A., Wood., G. J., and Barry, J.C.,. Ultramicroscopy, 19 (1986) 253266.Google Scholar
5. Dick, D. Van, Tendeloo, G. Van and Amelinckx, S., Ultramicroscopy 15 (1984) 357370.Google Scholar
6. Cuisinier, F.J.G., Steuer, P., Senger, B., Voegel, J.C., and Frank, R.M. Calcif Tissue Int, 51 (1992) 259268.Google Scholar
7. Mayumi, I., Toada, H., and Moriwaki, Y., Crystal, J. Growth 116 (1992) 319326.Google Scholar
8. Miake, Y., Shimoda, S., Fukae, M. and Aoba, T., Calcif Tissue Int. 53 (1993) 249256.Google Scholar
9. Belio-Reyes, A., Vargas-Ulloa, L., Jiménez-García, L.F. and Reyes-Gasga., J. Submitted to LatinAm. J. Met. Mat. (1999).Google Scholar