No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
We have used high resolution x-ray diffraction to analyze the structural changes that accompany boron doping of silicon by BF3 plasma source ion implantation (PSII). Triple crystal diffraction analysis of as-implanted PSII doped silicon showed little excess x-ray diffuse scattering, even when analyzed using the asymmetric (113) reflection for increased surface sensitivity. This result suggests that PSΠ is capable of providing high dose implantation with low damage. Annealing of the PSII-doped silicon showed the development of a compressive surface layer, indicated by enhanced x-ray scattering directed perpendicular to the surface. Virtually all of the scattering from the annealed samples was concentrated in the so-called “surface streak” which arises due to dynamical diffraction from the perfect crystal Si structure. Little if any diffuse scattering due to kinematic scattering from crystal defects was detected. These observations indicate that plasma source doping can be used to achieve both a shallow implant depth and an extremely uniform incorporation of boron into the silicon lattice.