Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:37:58.513Z Has data issue: false hasContentIssue false

Strength Variations during Mechanical Alloying Through the Nanostructural Range

Published online by Cambridge University Press:  01 February 2011

Christopher A. Schuh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
David T. Schoen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
Alan C. Lund
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
Get access

Abstract

During processes of mechanical alloying the characteristic structural length scales of an alloy, including the phase domain size and the crystallite grain size, decrease gradually to a nanocrystalline or even amorphous final state. This method therefore allows a unique avenue to explore the structure-property relationship over several orders of magnitude in length scale. In this work we have considered an ideal equiatomic Ti-Zr system deformed through multiple cold-rolling passes to refine the structural length scales into the nanometer range. The variation of the hardness of the system with decreasing length scale is discussed in terms of traditional Hall-Petch scaling, chemical mixing and the phase evolution of the system, as well as other possible contributions to the hardness variations during processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Malow, T. R. and Koch, C. C., Metall. Mater. Trans. 29A, 2285 (1998).Google Scholar
[2] Froes, F. H., Senkov, O. N. and Baburaj, E. G., Mater. Sci. Eng. A301, 44 (2001).Google Scholar
[3] Jang, D. and Atzmon, M., J. Appl. Phys. 93, 9282 (2003).Google Scholar
[4] Tian, H. H. and Atzmon, M., Acta Mater. 47, 1255 (1999).Google Scholar
[5] Schwarz, R. B., Petrich, R. R. and Saw, C. K., Journal of Non-Crystalline Solids 76, 281 (1985).Google Scholar
[6] Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).Google Scholar
[7] Sieber, H., Wilde, G., Sagel, A. and Perepezko, J. H., Journal of Non-Crystalline Solids, 250–252, 616 (1999).Google Scholar
[8] Klassen, T., Herr, U. and Averback, R. S., Acta Mater. 45, 2921 (1997).Google Scholar
[9] Zghal, S., Twesten, R., Wu, F. and Bellon, P., Acta Mater. 50, 4711 (2002).Google Scholar
[10] Koch, C. C. and Narayan, J., Materials Research Society Proceedings 634, B5.1.1 (2001).Google Scholar
[11] Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., Koch, C. C., Sergueeva, A. V. and Mukherjee, A. K., Appl. Phys. Lett. 81, 823 (2002).Google Scholar
[12] Zhang, X., Wang, H., Scattergood, R. O., Narayan, J. and Koch, C. C., Acta Mater. 50, 3995 (2002).Google Scholar
[13] Suryanarayana, C., Prog. Mat. Sci. 46, 1 (2001).Google Scholar
[14] Delogu, F., Schiffini, L. and Cocco, G., Phil. Mag. A 81, 1917 (2001).Google Scholar
[15] Clemens, B. M., Kung, H. and Barnett, S. A., MRS Bull. (1999).Google Scholar
[16] Zhang, X., Misra, A., Wang, H., Shen, T. D., Swadener, J. G., Embury, J. D., Kung, H., Hoagland, R. G. and Nastasi, M., J. Mater. Res. 18, 1600 (2003).Google Scholar
[17] Hsieh, P. J., Hung, Y. P. and Huang, J. C., Scripta Mater. 49, 173 (2003).Google Scholar