Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:24:09.870Z Has data issue: false hasContentIssue false

Strain-Compensation in InAsP/GaInP Multiple Quantum Wells for 1.3 μm Wavelength

Published online by Cambridge University Press:  15 February 2011

X. B. Mei
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, U.S.A.
C.W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, U.S.A.
Get access

Abstract

We show that high-quality strain-compensated InAsxP1−x/GayIn1−yP multiple quantum wells (MQWs) can be grown by gas-source molecular beam epitaxy on InP substrates even though the InAsxP1−x quantum wells have a large lattice mismatch (∼ 1.3%) with respect to InP. Very sharp satellite peaks in double-crystal X-ray diffraction and narrow line width in low-temperature photoluminescence (FWHM of 4 meV at 9 K) are obtained from MQWs of up to 50 periods. Strain compensation allows a wide range of the net strain around the ideally compensated point, where the net strain equals zero, without degrading crystalline quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanaka, H., Suzuki, M., Usami, M., Taga, H., Yamamoto, S., and Matsushima, Y., J. Light. Tech. 8, 1357 (1990).Google Scholar
2. Zucker, J. E., Bar-Joseph, I., Miller, B. I., Koren, U., and Chemla, D. S., Appl. Phys.Lett. 54, 10 (1989)Google Scholar
3. Chiu, T. H., Zucker, J. E., and Woodward, T. K., Appl. Phys. Lett. 59 (26), 3452(1991)Google Scholar
4. Cheng, A. N., Ph.D. thesis, University of California, San Diego (1994).Google Scholar
5. Hou, H. Q., Cheng, A. N., Wieder, H. H., Chang, W. S. C., and Tu, C. W., Appl. Phys. Lett. 63, 1833(1993).Google Scholar
6. Kasukawa, A., Namegaya, T., Fukushima, T., Iwai, N. and Kikuta, T., IEEE J. Quantum Electron 29, 1528(1993)Google Scholar
7. Chin, M. K., Yu, P. K. L., and Chang, W. S. C., IEEE J. Quantum Electron. QE–27, 696 (1991)Google Scholar
8. Sigiura, H., Mitsuhara, M., Oohashi, H., Hirono, T., and Nakashima, K., J. Crystal Growth 147, 1 (1995)Google Scholar
9. Woodward, T. K., Chiu, T-H., and Sizer, Theodore II, Appl. Phys. Lett. 60, 2846 (1992)Google Scholar
10. Jiang, X. S. and P. Yu, K. L., Appl. Phys. Lett. 65, 2536 (1994)Google Scholar
11. Vawter, G. Allen and Myers, D. R., J. Appl. Phys. 65, 4769 (1989)Google Scholar
12. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974)Google Scholar