Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T06:24:14.795Z Has data issue: false hasContentIssue false

Strain control in SrRuO3 thin films by using a lattice constant tunable buffer

Published online by Cambridge University Press:  01 February 2011

K. Terai
Affiliation:
Institute for Solid State Physics, University of Tokyo, Kashiwa, 277–8581, Japan.
T. Ohnishi
Affiliation:
Institute for Solid State Physics, University of Tokyo, Kashiwa, 277–8581, Japan.
M. Lippmaa
Affiliation:
Institute for Solid State Physics, University of Tokyo, Kashiwa, 277–8581, Japan.
H. Koinuma
Affiliation:
Frontier Collaborative Research Center, Tokyo Institute of Technology, Yokohama, 226–8503, Japan.
M. Kawasaki
Affiliation:
Institute for Materials Research, Tohoku University, Sendai, 980–8577, Japan.
Get access

Abstract

Heteroepitaxial oxide thin films are usually grown on single crystal substrate which offer a similar lattice constant as the target material. In general, there are no substrates that are suitable for film fabrication and have a good lattice matching. In our previous report, we succeeded in fabricating a lattice constant tunable buffer by using a Ba1-xSrxTiO3 / BaTiO3 bilayer structure on SrTiO3. The in-plane lattice constant of the buffer layer can be tuned from 3.91 to 3.99 Å and the lattice constant is determined only by the Ba/Sr ratio in the Ba1-xSrxTiO3 layer. The buffer is suitable for growing both strain-free films and strained films. In this report we demonstrate the use of the lattice constant tunable buffer for strain control in SrRuO3 magnetic thin films. SrRuO3 has a magnetic anisotropy which changes under lattice strain. We show that the easy axis of magnetization is parallel to the film surface under tensile strain on a Ba0.5Sr0.5TiO3 buffer. The easy axis is perpendicular to the surface in compressively strained films. The tensile strain in a film also results in an increase of the ferromagnetic ordering temperature from a bulk value of 160 K to 164 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Locquet, J.-P., Perret, J., Fompeyrine, J., Machler, E., Seo, J. W. and Van Tendeloo, G., Nature 394, 453 (1998).Google Scholar
2. Konishi, Y., Fang, Z., Izumi, M., Manako, T., Kasai, M., Kuwahara, H., Kawasaki, M., Terakura, K. and Tokura, Y., J. Phys. Soc. Jpn. 68, 3790 (1999).Google Scholar
3. Klein, L., Dodge, J. S., Geballe, T. H., Kapitulnik, A., Marshall, A. F., Antognazza, L. and Char, K., Appl. Phys. Lett. 66, 2427 (1995).Google Scholar
4. Gan, Q., Rao, R. A., Eom, C. B., Garrett, J. L. and Lee, M., Appl. Phys. Lett. 72, 978 (1998).Google Scholar
5. Terai, K., Lippmaa, M., Ahmet, P., Chikyow, T., Fujii, T., Koinuma, H. and Kawasaki, M., Appl. Phys. Lett. 80, 4437 (2002).Google Scholar
6. Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, T. and Koinuma, H., Appl. Phys. Lett. 77, 3426 (2000).Google Scholar
7. Callagan, A., Moeller, C. W. and Ward, R., Inorg. Chem. 5, 1573 (1966).Google Scholar
8. Lippmaa, M., Furumochi, T., Ohashi, S., Kawasaki, M., Koinuma, H. and Nagasawa, H., Rev. Sci. Instrum. 72, 1755 (2000).;Google Scholar
Ohashi, S., Lippmaa, M., Nakagawa, N., Nagasawa, H., Koinuma, H. and Kawasaki, M., Rev. Sci. Instrum. 70, 178 (1999).Google Scholar
9. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266, 1540 (1994).Google Scholar
10. Terai, K., Ohnishi, T., Lippmaa, M., Koinuma, H. and Kawasaki, M., Jpn. J. Appl. Phys. No.2A (2004) submitted.Google Scholar
11. Izumi, M., Nakazawa, K., Bando, Y., Yoneda, Y. and Terauchi, H., J. Phys. Soc. Jpn. 66, 3893 (1997).Google Scholar