Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:20:55.534Z Has data issue: false hasContentIssue false

Stm Study of the Influence of Adsorption on Step Dynamics

Published online by Cambridge University Press:  10 February 2011

T. P. Moffat*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Md 20899
Get access

Abstract

In situ STM has been used to examine the influence of anion adsorption and metal underpotential deposition on the structure and dynamics of steps on copper surfaces. Chloride is shown to form potential dependent adlayer structures on Cu(100) and Cu(111) which strongly affects the orientation of the surface steps. The adlayer acts as a template guiding step evolution during metal deposition and dissolution. Metal underpotential deposition (upd) exhibits similar effects on step structure. This is demonstrated for Pb upd on Cu(lll). In this instance the Pb monolayer displaces chloride from the surface and leads to a reorientation of the steps and an alteration of the step dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dietterle, M., Will, T. and Kolb, D.M., Nanoscale Probes of the Solid/Liquid Interface, eds. Gerwirth, A.A. and Siegenthaler, H., Kluwer Academic Publishers, Boston (1995).Google Scholar
2. Ehlers, C.B., Villegas, I and Stickney, J.L., J. Electroanal. Chem., 284, 403 (1990) and ref. therein.Google Scholar
3. Brisard, G.M., Zenati, E., Gasteiger, H.A., Markovic, N.M. and Ross, P.N., Langmuir, 11, 2221 (1995).Google Scholar
4. Lecoeur, J. and Bellier, J.P., Electrochimica Acta, 30, 1027 (1985).Google Scholar
5. Giessen, K., Hage, F., Himpsel, J., Riess, J.H. and Steinmann, W., Phys. Rev. Lett., 55, 300 (1985) and ref. therein.Google Scholar
6. Magnussen, O.M., Ocko, B.M., Adzie, R.R. and Wang, J.X., Phys. Rev. B, 51, 5510 (1995);Google Scholar
Magnussen, O.M., Ocko, B.M., Wang, J.X. and Adzie, R.R., J. Phys. Chem., 100, 5500 (1996) and ref. therein.Google Scholar
7. Suggs, D.W. and Bard, A.J., J. Phys. Chem., 99, 8351 (1995).Google Scholar
8. Moffat, T.P., in Nanostructured Materials in Electrochemistry, eds. Searson, P. and Meyer, J., PV 95–8, p. 225237, The Electrochemical Society, Inc., Pennington, NJ (1995);Google Scholar
Moffat, T.P., Mat. Res. Soc. Symp. Proc. Vol. 404, pg 3., MRS, Pittsburgh, PA (1996).Google Scholar
9. Poensgen, M., Wolf, J.F., Frohn, J., Giesen, M. and Ibach, H., Surf. Sci., 274, 430 (1992).Google Scholar
10. Breeman, M., Barkema, G.T., Langelaar, M.H. and Boerma, D.O., Thin Solid Films, 272, 195 (1996).Google Scholar
11. Barkey, D., Oberholtzer, F., and Wu, Q., Phys. Rev. Lett., 75, 16, 2980 (1995)Google Scholar
12. Suggs, D.W. and Bard, A.J., J. Amer. Chem. Soc, 116, 10725 (1994).Google Scholar
13. Motai, K., Hashizume, T., Lu, H., Jeon, D., Sakurai, T. and Pickering, H., Appl. Surface Science, 67, 246 (1993).Google Scholar