Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:04:19.897Z Has data issue: false hasContentIssue false

Step Bunching during SiGe Growth on Vicinal Si(111) Surfaces

Published online by Cambridge University Press:  10 February 2011

H. Hibino
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–0198, Japan
T. Ogino
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa 243–0198, Japan
Get access

Abstract

We investigate step bunching during SiGe growth on vicinal Si(111) surfaces. Step bunching occurs irrespective of the misorientation angle and direction of the vicinal surface, the growth temperature, and the Ge concentration. At 550°C, the average number of the steps in the bunch increases with the Ge concentration. After growth of 10-nm-thick SiGe layers, twodimensional islands are formed on the terraces, which indicates that the terrace width has already been saturated. Therefore, the terrace width is mainly determined by the diffusion length of the adatom. The average number of steps in the bunch increases with the Ge concentration because the diffusion length increases with the Ge concentration. The diffusion length also increases with the temperature. So the higher the temperature is, the larger the step bunch becomes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Phang, Y. H., Teichert, C., Lagally, M. G., Peticolos, L. J., Bean, J. C., and Kasper, E., Phys. Rev. B 50, 14435 (1994).Google Scholar
[2]Teichert, C., Phang, Y. H., Peticolos, L. J., Bean, J. C., and Lagally, M. G., in Surface Diffusion: Atomistic and Collective Processes, edited by Tringides, M. C., NATO-ASI Series (Plenum Press, New York, 1997), p. 297.Google Scholar
[3]Tersoff, J., Phang, Y. H., Zhang, Z., and Lagally, M. G., Phys. Rev. Lett. 75, 2730 (1995).Google Scholar
[4]Liu, F., Tersoff, J., and Lagally, M. G., Phys. Rev. Lett. 80, 1268 (1998).Google Scholar
[5]Phaneuf, R. J., Williams, E. D., and Bartelt, N. C., Phys. Rev. B38, 1984 (1988).Google Scholar
[6]Williams, E. D. and Bartelt, N. C., Science 251, 393 (1991).Google Scholar
[7]Wei, J., Wang, X.-S., Goldberg, J. L., Bartelt, N. C., and Williams, E. D., Phys. Rev. Lett. 68, 3885 (1992).Google Scholar
[8]Williams, E. D., Phaneuf, R. J., Wei, J., Bartelt, N. C., and Einstein, T. L., Surf. Sci. 294, 219 (1993).Google Scholar
[9]Hibino, H. and Ogino, T., Phys. Rev. Lett. 72, 657 (1994).Google Scholar
[10]Hibino, H., Fukuda, T., Suzuki, M., Homma, Y., Sato, T., Iwatsuki, M., Miki, K., and Tokumoto, H., Phys. Rev. B 47, 13027 (1993).Google Scholar
[11]Yokohama, T., Yokotsuka, T., Sumita, I., and Nakajima, M., Appl. Surf. Sci. 357–, 855 (1996).Google Scholar
[12]Kandel, D. and Weeks, J. D., Phys. Rev. Lett. 74, 3632 (1995).Google Scholar
[13]Kasu, M. and Kobayashi, N., J. Appl. Phys. 78, 3026 (1995).Google Scholar