Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:01:01.773Z Has data issue: false hasContentIssue false

Solidification Interface Morphologies in Zone Melting Recrystallization

Published online by Cambridge University Press:  28 February 2011

J. S. Im
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
H. Tomita
Affiliation:
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139., Sony Co. Research Center, Yokohama, Japan.)
Get access

Abstract

Using in situ optical microscopy we have studied the morphology of the liquid-solid interface during zone melting recrystallization. We have observed a variety of interface morphologies, each of which corresponds to specific types and distributions of subboundaries in the solidified material. We have also observed a variety of morphologies for stationary interfaces. We propose that perturbations in both the stationary and moving liquid-solid interfaces develop, at least in part, due to the spatial gradient in the radiation intensity in the region of the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maby, E.W., Geis, M.W., Lecoz, Y.L., Silversmith, D.J., and Mountain, R.W., and Antoniadis, D.A., Electron. Device Lett., edl-2, 241 (1981).Google Scholar
2. Fan, J.C.C., Geis, M.W. and Tsaur, B-Y, Appl. Phys. Lett., 38, 365 (1981).Google Scholar
3. Atwater, H.A., Smith, Henry I. and Geis, M.W., Appl. Phys. Lett., 41, 747 (1982).Google Scholar
4. Geis, M.W., Smith, Henry I., Tsaur, B-Y., Fan, John C.C., Silversmith, D.J. and Mountain, R.W., J. Electrochem. Soc., 129, 2812 (1982).Google Scholar
5. Geis, M.W., Smith, H.I., Silversmith, D.J., Mountain, R.W. and Thompson, C.V., J. Electrochem. Soc., 130, 1178 (1983).CrossRefGoogle Scholar
6. Pfeiffer, L., West, K.W., Paine, S., and Joy, D.C., in Materials Research Society Symposia Proceedings, Vol.35, Energy Beam-Solid Interactions and Transient Thermal Processing 1984, edited by Biegelsen, D.K., Rozgonyi, G.A. and C.V. Shank (Materials Research Society, Pittsburgh, PA, 1985), p. 583.Google Scholar
7. Leamy, H.J., Chang, C.C., Baumgart, H., Lemons, R.A. and Cheng, J., Mater. Letter, 1, 33 (1982).CrossRefGoogle Scholar
8. Limanov, A.B. and Givargizov, E.I., Materials Letters, 2, 93, (1983).Google Scholar
9. Dutartre, D., Appl. Phys. Lett., 48, 350 (1986).Google Scholar
10. Carruthers, J.R., Chap. 7, p. 325 in Treatise in Solid State Chemistry, Vol.5, ed. Hannay, N.B. (Plenum Press, New York).Google Scholar
11. Chen, C.K., Geis, M.W., Finn, M.C. and Tsaur, B-Y., Appl. Phys. Lett., 48, 1300, (1986).CrossRefGoogle Scholar
12. Bosch, M.A. and Lemon, R.A., Phys. Rev. Lett., 47, 1151 (1981).Google Scholar
13. Hawkins, W.G. and Biegelsen, D.K., Appl. Phys. Lett., 42, 358 (1983).Google Scholar
14. Grigoropoulos, Costas P., Buckholz, Richard H. and Domoto, Gerald A., J. Appl. Phys., 59, 454, (1986).Google Scholar
15. Jackson, K.A. and Kurtz, D.A., J. Cryst. Growth, 71, 385 (1985).Google Scholar