Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:46:57.753Z Has data issue: false hasContentIssue false

Solid State Synthesis and Properties of Doped LiMnO2 Cathode Materials

Published online by Cambridge University Press:  10 February 2011

B. Ammundsen
Affiliation:
Pacific Lithium Limited, PO Box 90725, Auckland, New Zealand, [email protected]
J. Desilvestro
Affiliation:
Pacific Lithium Limited, PO Box 90725, Auckland, New Zealand, [email protected]
T. Groutso
Affiliation:
The University of Auckland, Private Bag 92019, Auckland, New Zealand
D. Hassell
Affiliation:
Pacific Lithium Limited, PO Box 90725, Auckland, New Zealand, [email protected]
J. B. Metson
Affiliation:
The University of Auckland, Private Bag 92019, Auckland, New Zealand
E. Regan
Affiliation:
The University of Auckland, Private Bag 92019, Auckland, New Zealand
R. Steiner
Affiliation:
Pacific Lithium Limited, PO Box 90725, Auckland, New Zealand, [email protected]
P. J. Pickering
Affiliation:
Pacific Lithium Limited, PO Box 90725, Auckland, New Zealand, [email protected]
Get access

Abstract

The crystal structures, microstructures and electrochemical properties of Al-doped lithium manganese oxide materials LiAlxMn1−xO2 (0 ≤ x ≤ 0.1) prepared by solid state reactions have been investigated. A1 doping results in increased cation disorder in the orthorhombic polymorph of LiMnO2, and produces layered monoclinic LiMnO2 with an α-NaFeO2 type crystal structure. The formation of monoclinic LiAlxMn1-xO2 confirms earlier observations by Chiang et al. [1,2]. A mechanism is proposed for the orthorhombic-monoclinic transformation, based on Li-Mn inversion in the orthorhombic structure. Al ions substitute in Mn sites in the monoclinic phase and give rise to microstrain in the [2 0 -l] planes. Microstructural analysis by scanning electron microscopy has revealed Al-deficient striations which may represent residual zones of orthorhombic phase. In cycling tests in Li button cells, increasing the amount of Al dopant extends the number of cycles required for the capacity to evolve to its maximum value, but results in increased stability of the capacity at 55 °C. The layered structure of the monoclinic materials is retained on the first cycle, but transforms to a spinel-type structure on extended cycling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jang, Y.-I., Huang, B., Chiang, Y.-M. and Sadoway, D.R., Electrochem. Solid State Lett. 1, 13(1998).Google Scholar
2. Chiang, Y.-M., Sadoway, D.R., Jang, Y.-I., Huang, B. and Wang, H., Electrochem. Solid State Lett. 2, 107(1999).Google Scholar
3. Blyr, A., Sigala, C., Amatucci, G., Guyomard, D., Chabre, Y. and Tarascon, J.-M., J. Electrochem. Soc. 145, 194(1998).Google Scholar
4. Gummow, R.J., Liles, D.C. and Thackeray, M.M., Mater. Res. Bull. 28, 1249(1993).Google Scholar
5. Ohzuku, T., Ueda, A. and Hirai, T., Chem. Express 7, 193(1992).Google Scholar
6. Reimers, J.N., Fuller, E.W., Rossen, E. and Dahn, J.R., J. Electrochem. Soc. 140, 3396(1993).Google Scholar
7. Koetschau, I., Richard, M.N., Dahn, J.R., Soupart, J.B. and Rousche, J.C., J. Electrochem. Soc. 142, 2906(1995).Google Scholar
8. Davidson, I.J., McMillan, R.S., Murray, J.J. and Greedan, J.E., J. Power Sources 54, 232(1995).Google Scholar
9. Armstrong, A.R. and Bruce, P.G., jNature 381, 499(1996).Google Scholar
10. Capitaine, F., Gravereau, P. and Delmas, C., Solid State Ionics 89, 197(1996).Google Scholar
11. Tabuchi, M., Ado, K., Kobayashi, H., Kageyama, H., Masquelier, C., Kondo, A. and Kanno, R., J. Electrochem. Soc. 145, L49 (1998).Google Scholar
12. Vitins, G. and West, K., J. Electrochem. Soc. 144, 2587(1997).Google Scholar
13. Rodriguez-Carjaval, J., Fullprof Manual. Institut Laue-Langevin, Grenoble, 1992.Google Scholar
14. In trivalent manganese compounds, a tetragonal distortion occurs in the octahedral coordination of the Mn3+ d4 ions due to the Jahn-Teller stabilisation of the electronic structure, which produces two axial Mn-O bonds of ca. 2.3 Å and four equatorial bonds of ca. 1.9 Å. In LiMnO2 materials, the crystal structures adapt to this localised distortion through a cooperative effect where all the long bonds are orientated along the same crystal direction.Google Scholar
15. Croguennec, L., Deniard, P., Brec, R. and Lecerf, A., J. Mater. Chem. 7, 511(1997).Google Scholar
16. Carver, J.C., Schweitzer, G.K. and Carlson, T.A., J. Chem. Phys. 57 973(1972).Google Scholar
17. Benson, R. and Metson, J.B., in European Conference on Applications of Surface and Interface Analysis, edited by Mathieu, H.J., Reihl, B. and Briggs, D. (John Wiley & Sons, Chichester, 1996), pp. 373376.Google Scholar