Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:00:38.407Z Has data issue: false hasContentIssue false

Solid State Ionics in Solid Oxide Fuel Cells

Published online by Cambridge University Press:  28 February 2011

J. Schoonman
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
J.P. Dekker
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
J.W. Broers
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
N.J. Kiwiet
Affiliation:
TNO-Institute of Applied Chemistry, Zeist, The Netherlands
Get access

Abstract

Due to the high operating temperatures (900-1000 °C) the material demands upon Solid Oxide Fuel Cell (SOFC) components are quite stringent. Preferably lower operating temperatures (700-800 °C) are desired so that gas feed lines, heat exchangers, and structure components can be fabricated from relatively cheap stainless steel components.

Typically, the materials used in a SOFC are yttria stabilized zirconia (YSZ) as the solid electrolyte, nickel-zirconia cermet as the anode, strontium doped lanthanum manganite as the cathode, and magnesium doped lanthanum chromite as the interconnection material. The electrolyte and interconnect are difficult to fabricate, because they need to be gas tight, yet thin (30-50 microns) and mechanically stable. Due to the high volatility of CrO3 the densification of LaCrO3 into thin layers is a more demanding challenge than the fabrication of the electrolyte.

Electr°Chemical Vapor Deposition is the key technology for making thin layers of the solid electrolyte as well as the interconnection material LaCrO3. In the simplest case the oxide growth can be modeled with the Wagner oxidation theory for metals. In this paper theory and experiment of the growth of ionically conducting YSZ and electronically conducting LaCrO3 will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Isenberg, A.O., Thin Film Battery/Fuel Cell Power Generating System. Report ERDA. Contract EY-76-C-03-1197 (1978). Westinghouse Electric Corporation.Google Scholar
2. Steele, B.C.H., Development and Application of Ceramic Electrochemical Reactors. In “Ceramics in Energy Applications: New Opportunities”. Proceedings of the Institute of Energy Conference. 9-11 April 1990. Adam Hilger, Bristol, New York, 173-182 (1990).Google Scholar
3. Isenberg, A.O., Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, The Electrochemical Society 77-6 (1988); b) A.O. Isenberg, Solid State Ionics 3/4, 431 (1981); c) W. Feduska and A.O. Isenberg, J. of Power Sources 10, 89 (1983).Google Scholar
4. Isenberg, A.O., U.S. patent no. 4 374 163 (1983); b) A.O. Isenberg, U.S. patent no. 4 609 562 (1986); A. Brian, B.E. Szeders, U.S. patent no. 4 831 965 (1989).Google Scholar
5. Carolan, M.F. and Michaels, J.N., Solid State Ionics 25, 207 (1987).Google Scholar
6. Wagner, C., Z. Phys. Chem. B21, 25 (1933).Google Scholar
7. Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley (New York, 1972).Google Scholar
8. Carolan, M.F. and Michaels, J.N., Solid State Ionics 37, 189 (1990).Google Scholar
9. Carolan, M.F. and Michaels, J.N., Solid State Ionics 37, 197 (1990).Google Scholar
10. Dekker, J.P., Kiwiet, N.J. and Schoonman, J., Solid Oxide Fuel Cells, The Electrochemical Society 89–11, 57 (1989).Google Scholar
11. Pal, U.B. and Singhal, S.C., Proceedings of the Sixth (IUPAC) International Conference on High Temperatures-Chemistry of Inorganic Materials, Gaithersburg, MD (1989).Google Scholar
12. Pal, U.B. and Singhal, S.C., Solid Oxide Fuel Cells, The Electrochemical Society 89–11 (1989) 41; J. Electrochem. Soc. 137, 2937 (1990).Google Scholar
13. Lin, Y.S., Haart, L.G.J. de, Vries, K.J. de and Burggraaf, A.J., Solid Oxide Fuel Cells, The Electrochemical Society 89–11, 67 (1989); b) Y.S. Lin, L.G.J. de Haart, K.J. de Vries and A.J. Burggraaf, J. Electrochem. Soc. (in press).Google Scholar
14. Wagner, C., Z. Phys. Chem. 32, 447 (1936).Google Scholar
15. Pal'guev, S.F., Gil'derman, V.K. and Neuimin, A.D., J. Electrochem. Soc. 122, 745 (1975).Google Scholar
16. Perry, C.H. and Feinberg, A., Solid State Commun. 36, 519 (1980).Google Scholar
17. Gur, T.M., Raistrick, I.D. and Huggins, R.A., Mat. Sci. Eng. 46, 53 (1980).Google Scholar
18. Calès, B. and Baumard, J.F., J. Mat. Sci. 17, 3243 (1982).Google Scholar
19. Näfe, H., Solid State Ionics 13, 255 (1984).Google Scholar
20. Bentzen, J.J., Andersen, N.H., Poulsen, F.W., Sorensen, O.T. and Schram, R., Solid State Ionics 28–30, 550 (1988).CrossRefGoogle Scholar
21. Park, J.H. and Blumenthal, R.N., J. Electrochem. Soc. 136, 2867 (1989).Google Scholar
22. Weppner, W., J. Solid State Chem. 20, 305 (1977).Google Scholar
23. Weber, W.J., Griffin, C.W. and Bates, J.L., J. Amer. Ceram. Soc. 70, 265 (1987).CrossRefGoogle Scholar
24. Dekker, J.P., Electrochemical Vapor Deposition of Solid Oxide Fuel Cell Components. M. Sc. Thesis. Delft University of Technology. July 1989.Google Scholar
25. Weppner, W., Electrochim. Acta 22, 721 (1977).Google Scholar
26. Kiwiet, N.J. and Schoonman, J., IECEC 3 (1990). In press.Google Scholar
27. Vischjager, D.J., to be published.Google Scholar
28. Singhal, S.C., Interconnection material development for Solid Oxide Fuel Cells. DOE Contract No. DE-AC21-84MC21184. Final Report (1985).Google Scholar
29. Ishigahi, T., Yamaguchi, S., Koshio, K., Misuzaki, J. and Fueki, K., J. Solid State Chem. 73, 179 (1988).CrossRefGoogle Scholar
30. Anderson, H.U., Nasrallah, M.M., Flandermeyer, B.K. and Agarwal, A.K., J. Solid State Chem., 56, 325 (1985).Google Scholar
31. Flandermeyer, B.K., Nasrallah, M.M., Agarwal, A.K. and Anderson, H.U., J. Amer. Ceram. Soc., 67, 195 (1984).Google Scholar
32. Flandermeyer, B.K., Nasrallah, M.M., Sparlin, D.M. and Anderson, H.U., High Temperature Sci., 20, 259 (1985).Google Scholar
33. Kröger, F.A., The Chemistry of Imperfect Crystals. 2, 2nd revised edition. North Holland. Amsterdam (1976).Google Scholar