Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T18:09:43.987Z Has data issue: false hasContentIssue false

Sensors for High-Throughput Materials Characterization: 24-channel Array of Quartz Crystal Microbalances

Published online by Cambridge University Press:  01 February 2011

William G. Morris
Affiliation:
General Electric Global Research, Niskayuna, NY 12309
Radislav A. Potyrailo
Affiliation:
General Electric Global Research, Niskayuna, NY 12309
Get access

Abstract

We have developed a multichannel materials characterization system based on thickness-shear mode (TSM) sensors, also known as quartz crystal microbalances (QCMs). The sensors are arranged as a 6 × 4 array that is compatible with available 24-well plates that can be manipulated with standard robotic equipment. Our sensor system can measure frequencies from 5 MHz to 20 MHz with a noise level of less than 0.1 Hz for a 1 sec acquisition interval. The sensors can be placed in a gas-flow-though cell for studies of vapor-sorption properties, or they can be immersed into a 24-well plate array for studies of materials solubility. The sensor array is connected to the measurement electronics through a multi-conductor cable, enabling the sensors to be operated in a temperature, pressure, or chemical environment, which would otherwise adversely affect the electronic stability. The 24-channel array has been applied to the screening of sensor materials for determination of chlorinated organic solvents at part per billion levels in groundwater wells. The primary screen is the discovery screen where materials are exposed to a single analyte concentration. The secondary screen is the focused evaluation where the best subset of these materials is exposed to analytes and interferences. The tertiary screen involves evaluation of material performance under conditions mimicking the long-term application. Six families of potential sensor materials were examined with rapid downselection by using this approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Mandelis, A.; Christofides, C. Physics, Chemistry and Technology of Solid State Gas Sensor Devices; Wiley: New York, NY, 1993.Google Scholar
(2) Baltes, H.; Göpel, W.; Hesse, J., Eds. Sensors Update; VCH: Weinheim, 1996.Google Scholar
(3) Janata, J.; Josowicz, M.; Vanysek, P.; DeVaney, D. M., Anal. Chem. 1998, 70, 179R208R.Google Scholar
(4) Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Fresenius', J., Anal. Chem. 1998, 362, 349373.Google Scholar
(5) Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 25952626.Google Scholar
(6) Soloman, S., Sensors Handbook; McGraw-Hill: New York, NY, 1999.Google Scholar
(7) Brecht, A.; Burckardt, R.; Rickert, J.; Stemmler, I.; Schuetz, A.; Fischer, S.; Friedrich, T.; Gauglitz, G.; Goepel, W. J. Biomolecular Screening 1996, 1, 191201.Google Scholar
(8) Matsiev, L.; Bennett, J.; McFarland, E. Method and apparatus for characterizing materials by using a mechanical resonator; World Patent Appl. WO 99/18431, 1999.Google Scholar
(9) Matsiev, L.; Bennett, J.; McFarland, E. Method and apparatus for characterizing materials by using a mechanical resonator; US Patent 6,336,353, 2002.Google Scholar
(10) Westerick, J. J.; Mello, J. M.; Thomas, R. F. J. Am. Water Works Assoc. 1984, 76, 5259.Google Scholar
(11) DeWeerd, K. A.; Flanagan, W. P.; Brennan, M. J.; Principe, J. M.; Spivack, J. L. Biorem. J. 1998, 2, 2942.Google Scholar
(12) Freedman, D. L.; Gossett, J. M., Appl. Environ. Microbiol. 1989, 55, 21442151.Google Scholar
(13) Barrio-Lage, G. A.; Parsons, F. Z.; Nassar, R. S.; Lorenzo, P. A. Environ. Sci. Technol. 1986, 20, 9699.Google Scholar
(14) Barrio-Lage, G. A.; Parsons, F. Z.; Nassar, R. S.; Lorenzo, P. A. Environ. Toxicol. Chem. 1987, 6, 571578.Google Scholar
(15) Parsons, F. Z.; Wood, P. R.; DeMarco, J. Am. Water Assoc. 1984, 76, 5659.Google Scholar
(16) Sivavec, T. M.; Potyrailo, R. A. Polymer coatings for chemical sensors; US Patent 6,357,278 B1, 2002.Google Scholar