No CrossRef data available.
Article contents
Sensors for High-Throughput Materials Characterization: 24-channel Array of Quartz Crystal Microbalances
Published online by Cambridge University Press: 01 February 2011
Abstract
We have developed a multichannel materials characterization system based on thickness-shear mode (TSM) sensors, also known as quartz crystal microbalances (QCMs). The sensors are arranged as a 6 × 4 array that is compatible with available 24-well plates that can be manipulated with standard robotic equipment. Our sensor system can measure frequencies from 5 MHz to 20 MHz with a noise level of less than 0.1 Hz for a 1 sec acquisition interval. The sensors can be placed in a gas-flow-though cell for studies of vapor-sorption properties, or they can be immersed into a 24-well plate array for studies of materials solubility. The sensor array is connected to the measurement electronics through a multi-conductor cable, enabling the sensors to be operated in a temperature, pressure, or chemical environment, which would otherwise adversely affect the electronic stability. The 24-channel array has been applied to the screening of sensor materials for determination of chlorinated organic solvents at part per billion levels in groundwater wells. The primary screen is the discovery screen where materials are exposed to a single analyte concentration. The secondary screen is the focused evaluation where the best subset of these materials is exposed to analytes and interferences. The tertiary screen involves evaluation of material performance under conditions mimicking the long-term application. Six families of potential sensor materials were examined with rapid downselection by using this approach.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004