Published online by Cambridge University Press: 01 February 2011
We present experimental results on dry friction, which are consistent with the hypothesis that the stick-slip mechanism for energy release is described by self-organized criticality. The data, obtained with an Atomic Force Microscope set to measure lateral forces– examines the variation of the friction force as a function of time – or sliding distance. The materials studied were nominally flat surfaces of mica, quartz, silica and steel. An analysis of the data shows that the probability distribution of slip sizes follows a power law. Our data strongly supports the existence of self-organized criticality for nano-stick-slip in dry sliding friction.