Published online by Cambridge University Press: 28 February 2011
Recently there has been a great deal of interest in the use of thin (≤0.1µm) heavily doped polysilicon films as diffusion sources for shallow junctions in silicon substrates. It has been reported that grain growth and solid phase epitaxy occur during annealing of such films and that the apparent rates of both are much greater during rapid thermal annealing. We report similar grain growth behavior for rapid thermal annealed thin polysilicon films deposited onto amorphous SiO2. Based on these experimental results we propose that solid phase homoepitaxy in polysilicon films occurs via secondary grain growth. This process proceeds rapidly at first but slows down due to grain boundary drag. Rapid thermal annealing of polysilicon films provides a method for selectively utilizing the kinetic process that dominates for short times.