Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:04:23.761Z Has data issue: false hasContentIssue false

Second Derivative Ballistic Electron Emission Spectroscopy in Au/(AlGa)As

Published online by Cambridge University Press:  10 February 2011

M. Kozhevnikov
Affiliation:
Gordon McKay Laboratory, DEAS, Harvard University, Cambridge, MA 02138
V. Narayanamurti
Affiliation:
Gordon McKay Laboratory, DEAS, Harvard University, Cambridge, MA 02138
D. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Yi-Jen Chiu
Affiliation:
ECE Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

Our current study focuses on an analysis of the ballistic electron emission microscopy (BEEM) spectra of Au/(AIGa)As heterostructures to estimate quantitatively the effect of the carrier scattering in the metal, at the metal-semiconductor (m-s) interface and in the semiconductor on the multivalley carrier transport. The second derivative (SD)-BEEM spectra, representing the heterostructure transmission coefficient, show explicit partitioning of the contribution of different transport channels (Γ, L and X conduction valleys). Our analysis of SD-BEEM spectra by the developed theoretical model indicates that about 85–92% of the BEEM electrons are scattered at the nonepitaxial Au/GaAs interface. We also show that initial electron distribution among the conduction bands of the semiconductor, specified by the m-s interface scattering, is modified by the further hot-electron transport inside the semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bell, L. D. and Kaiser, W. J., Phys. Rev. Lett. 61, 2368 (1988).Google Scholar
2.Fernandez, A., Hallen, H. D., Huang, T., Buhrman, R. A., and Silcox, J., Appl. Phys. Lett. 57, 2826 (1990).Google Scholar
3.Niedermann, P., Quattropani, L., Solt, K., Kent, A. D., and Fischer, O., J. Vac. Sci. Technol. B 10, 580 (1992).Google Scholar
4.Bauer, A., Cuberes, M. T., Prietsch, M., and Kaindl, G., Phys. Rev. Lett. 71, 149 (1993).Google Scholar
5.Sirringhaus, H., Lee, E. Y., Kafader, U., and Kanel, H. v.J. Vac. Sci. Technol. B13, 1848 (1995).Google Scholar
6.O'Shea, J. J., Brasel, E. G., Rubin, M. E., Bhargava, S., Chin, M. A., and Narayanamurti, V., Phys. Rev. B56, 2026 (1997).Google Scholar
7.Rubin, M. E., Medeiros-Ribeiro, G.O'Shea, J. J., Chin, M. A., Lee, E. Y., Petroff, P. M., and Narayanamurti, V., Phys. Rev. Lett. 77, 5268 (1996).Google Scholar
8.Smoliner, J., Heer, R., Eder, C., and Strasser, G., Phys. Rev B58, R7516 (1998).Google Scholar
9.Simmons, J. G., J. Appl. Phys. 34, 1793 (1963).Google Scholar
10.Ludeke, R. and Prietsch, M., J. Vac. Sci. Technol. A9, 885 (1991).Google Scholar
11.Prietsch, M., Phys. Rep. 253, 163 (1995).Google Scholar
12.Henderson, G. N., First, P. N., Gaylord, T. K., and Glytsis, E. N., Phys. Rev. Lett. 71, 2999 (1993).Google Scholar
13.Smith, D. L. and Kogan, S. M., Phys. Rev. B54, 10354 (1996).Google Scholar
14.Schowalter, L. J. and Lee, E. Y., Phys. Rev. B43, 9308 (1991).Google Scholar
15.Ludeke, R., Phys. Rev. Lett. 70, 214 (1993).Google Scholar
16.M.-l., Ke, Westwood, D. I., Matthai, C. C., Richardson, B. E., and Williams, R. H., Phys. Rev. B53, 4845 (1996).Google Scholar
17.Smith, D. L., Lee, E. Y., and Narayanamurti, V., Phys. Rev. Lett. 80, 2433 (1998).Google Scholar
18.Adachi, S., J. Appl. Phys. 58, R1 (1985).Google Scholar
19.Lee, E. Y., Bhargava, S., Chin, M. A., and Narayanamurti, V., J. Vac. Sci. Technol. A15, 1351 (1997).Google Scholar
20.Ventrice, C. A., LaBella, V. P., Ramaswamy, G., Yu, H.-P., and Schowalter, L. J., Phys. Rev. B53, 3952 (1996).Google Scholar