No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanoscale feature of interest, without the use of a zoom box with its thermal drift and local origin difficulties. It is a recognition-driven and learning approach, made possible through combining SPM piezoelectric implementation with on-line image processing and dynamically adaptive learning algorithms. Segmentation plus a recognized pattern is implemented within a scan plan and used to guide the tip in a recognition-driven return to a specific site.
The specific application focus of our group is on the development of Scanning Probe Recognition Microscopy for nanobiological investigations. In the present work, Scanning Probe Recognition Microscopy is used in a direct investigation of the surface and elastic properties along individual tubules within a tissue scaffolding matrix. Elastic properties are indicated as important influences on actin polymerization and consequent cell pseudopodia extension and contraction.