Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:04:59.295Z Has data issue: false hasContentIssue false

Scaled PLZT Thin Film Capacitors with Excellent Endurance and Retention Performance

Published online by Cambridge University Press:  21 March 2011

Fan Chu
Affiliation:
Ramtron International Corporation, 1850 Ramtron Drive, Colorado Springs, CO 80921, U.S.A e-mail: [email protected]
Glen Fox
Affiliation:
Ramtron International Corporation, 1850 Ramtron Drive, Colorado Springs, CO 80921, U.S.A
Tom Davenport
Affiliation:
Ramtron International Corporation, 1850 Ramtron Drive, Colorado Springs, CO 80921, U.S.A
Get access

Abstract

The requirements for future ferroelectric non-volatile memories (FRAM) include lower operating voltages, higher densities and tighter design rules. In order to achieve these requirements the key component of the FRAM device, viz., the PbZrxTi1划xO3 (PZT) thin film capacitor must be scaled dimensionally to obtain reduced film thickness and capacitor area. This paper presents the ferroelectric performance of RF magnetron sputtered PLZT thin films with thickness scaled down to 1000Å. The switching performance of the thickness scaled PLZT thin films meets the requirements of 1.8V FRAM device. Though PLZT ceramic thin films, of which the fatigue is often a concern, are utilized as non-volatile component, excellent fatigue performance was observed. The scaled PLZT thin film capacitors are fatigue free up to 1011 fatigue cycles (E=200kV/cm). The scaled 1000Å PLZT thin films also showed good imprint performance. The opposite-state charge after 10 years baking at 150°C was still above the sensing level. The thickness scaled PZT thin films, showing dramatically improved ferroelectric performance, can be applied to the manufacturing of low voltage FRAM products.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nasby, R. D., Schwank, J. R., Rodgers, M. S., and Miller, S. L., Integrated Ferroelectrics, 2, 91(1992).Google Scholar
2. Colla, E. L., Taylor, D. V., Tagantsev, A. A., and Setter, N., Applied Physics Letters, 72(19), 2478(1998).Google Scholar
3. Chen, I-Wei, and Wang, Y., Applied Physics Letters, 75(26), 4186(1999).Google Scholar
4. Brazier, M., Mansour, S., and McElfresh, M., Applied Physics Letters, 74(26), 4032(1999).Google Scholar
5. Mansour, S. A. and Vest, R. W., Integrated Ferroelectrics, 1, 57(1992).Google Scholar
6. Du, X. F. and Chen, I. -Wei, Journal of Applied Physics, 83(12), 7789(1998).Google Scholar
7. Kim, S. H., Kim, D. J., Hong, J. G., Streiffer, S. K., and Kingon, A. I., Journal of Materials Research, 14(4), 1371(1999).Google Scholar
8. Chu, F., Hickert, G., Hadnagy, T. D., and Suu, K-K., Integrated Ferroelectrics, 26, 47(1999).Google Scholar
9. Izumi, N., Fujimort, Y., Nakamura, T., and Kamisawa, A., IEICE Transactions on Electronics, E81–c(4), 513(1998).Google Scholar
10. Matsuura, K., Takai, K., Tamura, T., Ashida, H., and Otani, S., IEICE Transactions on Electronics, E81–c(4), 528(1998).Google Scholar
11. Stolichnov, I., Tagantsev, A., and Setter, N., Applied Physics Letters, 75(12), 1790(1999).Google Scholar
12. Yin, J., Zhu, T., Liu, Z. G., and Yu, T., Applied Physics Letters, 75(23), 3698(1999).Google Scholar
13. Hadnagy, T. D., Traynor, S. D., and Dalton, D. I., Integrated Ferroelectrics, 16, 219(1997).Google Scholar
14. Chu, F. and Fox, G., 12th International Symposium on Integrated Ferroelectrics (ISIF2000), Session D, 18C, March 12-15, 2000, Aachen, Germany Google Scholar
15. Traynor, S. D., Hadnagy, T. D., and Kammerdiner, L., Integrated Ferroelectrics, 16, 63(1997).Google Scholar