Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T14:39:26.265Z Has data issue: false hasContentIssue false

Resonant Sensors for Microfluidic Applications

Published online by Cambridge University Press:  01 February 2011

Florentina Niebelschütz
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany, +493677693352, +493677693355
Katja Tonisch
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Volker Cimalla
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Klemens Brückner
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Ralf Stephan
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Matthias Hein
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Andreas Schober
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Oliver Ambacher
Affiliation:
[email protected], Technische Universität Ilmenau, Institute of Micro- and Nanotechnologies, Gustav-Kirchhoff-Str. 7, Ilmenau, 98693, Germany
Get access

Abstract

In this work we present both resonators working at ambient conditions and their first application as a biological and physical sensor. Singly- and doubly-clamped resonators of different geometries were realized using active layers of silicon carbide and aluminum nitride. The resonators were excited by magneto-motive actuation. The quality factor reached 350 and 50000 in air and in vacuum (2-5 10−5 mbar), respectively, which is sufficient for sensing applications in air. The resonance shift caused by mass loadings in the range of picograms and by single biological cells was measured at ambient conditions. Initial non-resonant measurements in liquids such as propanol were performed to investigate the possibility of viscosity measurements in small volumes such as microfluidic channels and droplets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roukes, M. L. et al., Phys. World, 14 (2001), 25.Google Scholar
2. Gupta, A. K. et al., PNAS, vol. 103 no. 36 (2006), 13363.Google Scholar
3. Cimalla, V., Foerster, Ch., Will, F., Tonisch, K., Brueckner, K., Stephan, R., Hein, M., Ambacher, O., App. Phys. Lett 88 (2006) 253501.Google Scholar
4. Foerster, Ch., Cimalla, V., Brueckner, K., Lebedev, V., Stephan, R., Hein, M., Ambacher, O., phys. stat. sol. (a), 202 (2005), 671.Google Scholar
5. Brueckner, K., Förster, Ch., Tonisch, K., Cimalla, V., Ambacher, O., Stephan, R., Blau, K., and Hein, M. A., Proc. 35th European Microwave Conference, Paris, (2005) 1531.Google Scholar
6. Ikehara, T., Zwijze, R. A. F., Ikeda, K., J. Micromen. Microeng., 11 (2001), 50.Google Scholar