Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:26:29.054Z Has data issue: false hasContentIssue false

Rapid Thermal Oxidation of Lightly Doped Silicon in N2O

Published online by Cambridge University Press:  22 February 2011

S.C. Sun
Affiliation:
Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
L.S. Wang
Affiliation:
Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
F.L. Yeh
Affiliation:
Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
T.S. Lai
Affiliation:
Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Y.H. Lin
Affiliation:
Nano Device Laboratory, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Get access

Abstract

In this paper, a detailed study is presented for the growth kinetics of rapid thermal oxidation of lightly-doped silicon in N2O and O2 on (100), (110), and (111) oriented substrates. It was found that (110)-oriented Si has the highest growth rate in both N2O and dry O2, and (100) Si has the lowest rate. There is no “crossover” on the growth rate of rapid thermal N2O oxidation between (110) Si and (111) Si as compared to oxides grown in furnace N2O. Pressure dependence of rapid thermal N2O oxidation is reported for the first time. MOS capacitor results show that the low-pressure (40 Torr) N2O-grown oxides have much less interface state generation and charge trapping under constant current stress as compared to oxides grown in either 760 Torr N2O or O2 ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chu, T.Y., Ting, W., Ahn, J.H., Lin, S., and Kwong, D.L., Appl. Phys. Lettt., 59, 1412 (1991)CrossRefGoogle Scholar
2. Hwang, H., Ting, W., Maiti, B., Kwong, D. L., and Lee, J., Appl. Phy. Lett. 57, 1010 (1991)CrossRefGoogle Scholar
3. Okada, Y., Tibin, P.J., Lakhotia, V., Feil, W.A., Ajuria, S.A., and Hegde, R.I., Appl. Phys. Lett. 63, 194 (1993)Google Scholar
4. Irene, E.A., Tierney, E., and Angilello, J., J. Electrochem. Soc., 129, 2594 (1982)CrossRefGoogle Scholar
5. Irene, E. A., J. Appl. Phys., 54, 5416 (1983)Google Scholar
6. Irene, E. A., Massoud, H. Z., and Tierney, E., J. Electrochem. Soc., 133, 1253 (1986)Google Scholar
7. Yoon, G.W., Joshi, A.B., Kim, J., and Kwong, D.L., Mat. Res. Soc. Symp. Proc. 303, p. 291 (1993)Google Scholar
8. Miyai, Y., Yoneda, K., Oishi, H., Uchida, H., and Inoue, M., J. Electrochem. Soc., 135, 155 (1988)Google Scholar
9. Araujo, C.A. Paz de and Gallegos, P.W., J. Electrochem. Soc., 136, 2673 (1989)Google Scholar
10. Deal, B. E. and Grove, A. S., J. Appl. Phys., 36, 3770 (1965)CrossRefGoogle Scholar
11. Massoud, H. Z., Plummer, J. D., and Irene, E. A., J. Electrochem. Soc., 132, 2685 (1985)CrossRefGoogle Scholar
12. Sun, S. C. and Chang, H. Y., Proceedings of 23rd European Solid State Device Research Conference, 403 (1993)Google Scholar
13. Fukuda, H., Yasuda, M., and Ohno, S., Electronics Lett. 27, 440 (1991)CrossRefGoogle Scholar
14. Hori, T., Iwasaki, H., and Tsuji, K., IEEE Trans. Electron Devices, 35, 904 (1988)Google Scholar