Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:49:00.223Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Sputtered Ti-Ni-Si Films

Published online by Cambridge University Press:  28 February 2011

M. Setton
Affiliation:
Laboratory for Research on the Structure of Matter Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, Pa. 19104
E. H. Horache
Affiliation:
Laboratory for Research on the Structure of Matter Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, Pa. 19104
J. Van Der Spiegel
Affiliation:
Laboratory for Research on the Structure of Matter Moore School of Electrical Engineering, Center for Sensor Technologies, University of Pennsylvania, Philadelphia, Pa. 19104
J. J. Santiago
Affiliation:
Laboratory for Research on the Structure of Matter Moore School of Electrical Engineering, Center for Sensor Technologies, University of Pennsylvania, Philadelphia, Pa. 19104
J. E. Fischer
Affiliation:
Laboratory for Research on the Structure of Matter Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, Pa. 19104
M. Siegal
Affiliation:
Laboratory for Research on the Structure of Matter Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, Pa. 19104
Get access

Abstract

A ternary compound results from the fast radiative processing of Ni/Ti bilayers on Si<100> substrates. In the Ti-Ni-Si system, Ni is the dominant moving specie at low temperatures while Si starts to diffuse at 575°C. For bilayers with Ti in excess, the final product,above 750°C, is a mixture of ternary compound and TiSi2 whereas excess Ni leads to a layer of NiSi between the substrate and the ternary layer, at tempera-tures below 700° C.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tu, K.N., Hammer, W.N., Olowolafe, J.O., J. Appl. Phys., 51, No. 3, P. 16631668, (1980).CrossRefGoogle Scholar
2. Robinson, P.M. in Intermetallic compounds, edited by Westbrook, J.H. (J. Wiley and Sons Publishers 1967), p 52.Google Scholar
3. Constitution of binary alloys, edited by Hansen, M. (Mac Graw Hill Publishers 1958), p 1049 Google Scholar
4. Murarka, S.P., Fraser, D.B., J. Appl. Phys.,51, No 1, p342349, (1980)Google Scholar
5. d'Heurle, F.M., Gas, P., J. Mater. Res. 1(1), p 205, (1986)CrossRefGoogle Scholar
6. Westbrook, J.H., DiCerbo, R.K., Peat, A.J., GE Tech. Report 58-RL-2117, (1958).Google Scholar
7. Markiv, V. Ya, Gladyshevskii, E.I., Kripyakevich, P.I., Fedoruk, T.I.. Izvestiya Akad. Nauk. SSSR, Neorg. Mater.,2, No 7,13171319,(July 1966)Google Scholar
8. Wei, C.S., Spiegel, J. Van der, Santiago, J., Thin Solid Films, 118, 155 (1984).Google Scholar
9. Jeitschko, W., Jordan, A.G., Beck, P.A., The Met. Soc., Trans. AIME,245 P 335339, (1969)Google Scholar
10. Mayer, J.W., Lau, S.S., Tu, K.N., J. Appl. Phys., 50(9), p. 5855, (1979).Google Scholar
11. Hung, L.S., Wang, S.Q., Mayer, J.W., Saris, F.W., Mat. Res.Soc. Proc., Vol 54,p 159, (1986)Google Scholar
12. Peart, R.F., Tomlin, D.H., Acta Metallurgica, 10, p 123, (1962).Google Scholar
13. Yang, H., Bene, R.W., J. Appl. Phys., 59(5), p 1525, (1986).Google Scholar
14. Bene, R.W., Appl. Phys .Lett., 41(6), p 529531, (1982).Google Scholar
15. Hung, L.S., Mayer, J.W., J. Appl. Phys., 60(3),p 1002, (1986)Google Scholar