Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:26:42.490Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of III–V Compound Materials

Published online by Cambridge University Press:  22 February 2011

M. Kuzuhara
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 4–1–1, Miyazaki, Miyamae-ku, Kawasaki 213, Japan
H. Kohzu
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 4–1–1, Miyazaki, Miyamae-ku, Kawasaki 213, Japan
Y. Takayama
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 4–1–1, Miyazaki, Miyamae-ku, Kawasaki 213, Japan
Get access

Abstract

Rapid thermal process utilizing radiation from halogen lamps has been used to post-anneal ion-implanted GaAs. Annealing conditions for Si implants in GaAs are discussed from the view point of applying this technique to GaAs MESFET fabrication. Also, the properties of S and Mg implants in GaAs followed by rapid thermal annealing are comparatively studied with the results after conventional furnace annealing. High electrical activation and minimized implant diffusion for both low and high dose implants are the principal features of this technique. The fabricated MESFET showed much higher transconductance without any anomalous characteristics, indicating this technique to be a promising alternative to conventional furnace annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arai, M., Nishiyama, K., and Watanabe, N., Jpn. J. Appl. Phys. 20, L124 (1981).Google Scholar
2.Davies, D.E., McNally, P.J., and Lorenzo, J.P., IEEE Electron Device Lett. EDL–3, 102 (1982).Google Scholar
3.Kuzuhara, M., Kohzu, H., and Takayama, Y., Appl. Phys. Lett. 41, 755 (1982).Google Scholar
4.Kuzuhara, M., Kohzu, H., and Takayama, Y., J. Appl. Phys. 54, 3121 (1983).Google Scholar
5.Tabatabaie-Alavi, K., Masum Choudhury, A.N.M., Fonstad, C.G., and Gelpey, J.C., Appl. Phys. Lett. 43, 505 (1983). 662Google Scholar
6.Tabatabaie-Alavi, K., Masum Choudhury, A.N.M., Kanbe, H., Fonstad, C.G. and Gelpey, J.C., Appl. Phys. Lett. 43, 647 (1983).Google Scholar
7.Ito, K., Yoshida, M., Otsubo, M., and Murotani, T., Jpn. J. Appl. Phys. 22, L299 (1983).Google Scholar
8.Kohzu, H., Kuzuhara, M., and Takayama, Y., J. Appl. Phys. 54, 4998 (1983).Google Scholar
9.Masum Choudhury, A.N.M., Tabatabaie-Alavi, K., Fonstad, C.G., and Gelpey, J.C., Appl. Phys. Lett. 43, 381 (1983).Google Scholar
10.Chapman, R.L., Fan, J.C.C., Donnelly, J.P., and Tsaur, B-Y., Appl. Phys.Lett. 40, 805 (1982).Google Scholar
11.Asbeck, P.M., Miller, D.L., Babcock, E.J., and Kirkpatrick, C.G., IEEE Electron device Lett. EDL–4, 81 (1983).Google Scholar
12.Shah, N.J., Ahmed, H., Sanders, I.R., and Singleton, J.F., Electron. Lett. 16, 433 (1980).Google Scholar
13.Shah, N.J., Ahmed, H., and Leigh, P.A., Appl. Phys. Lett. 39, 322 (1981).Google Scholar
14.Kwor, R., Yeo, Y.K., and Park, Y.S., J. Appl. Phys. 53, 4786 (1982).Google Scholar
15.Choe, B.D., Yeo, Y.K., and Park, Y.S., J. Appl. Phys. 51, 4742 (1980).Google Scholar
16.Kasahara, J., Sakurai, H., Kato, Y., and Watanabe, N., Jpn. J. Appl. Phys. 21, L103 (1982).Google Scholar
17.Kuzuhara, M., and Kohzu, H., submitted for publication.Google Scholar
18.Furutsuka, T., Katano, F., Ishikawa, M., Nozaki, T., Tsuji, T., and Higashisaka, A., 1983 Nat. Cony. Rec. on Sc. Tech., IECE Japan p.166 (in Japanese).Google Scholar
19.Inada, T., Tatsuta, S., Okamura, S., Muto, S., and Hiyamizu, S., The 44th Autumn Meeting of the Japan Society of Appl. Phys. (1983) p.471 (in Japanese).Google Scholar