Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:56:00.414Z Has data issue: false hasContentIssue false

Rapic Thermal Annealing of W-TI Bilayers on Silicon

Published online by Cambridge University Press:  26 February 2011

C. S. Wei
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
J. Van der Spiegel
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
M. Setton
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
J. Santiago
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
M. Tanielian
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
S. Blackstone
Affiliation:
University of Pennsylvania, Department of Electrical Engineering D-2, Philadelphia, PA 19104-6390
Get access

Abstract

W-Ti bilayers on Si have been processed by fast thermal annealing in air, in N2/H2 (5%), and vacuum (1 E-3 and 1 E-6 Torr). The results indicate that the W layer on top of Ti acts as an effective protection barrier against oxidation of Ti in all atmospheres except air. Titanium-rich silicides are formed after 500 °C, while TiSi2 is completed at about 600 °C. At 700 °C a bilayer of WSi2/TiSi2 is found. Silicon is found to be the diffusing specie during the formation of WSi2. Finally, a ternary silicide, Ti0.6W0.4Si2, starts to form after 780 °C. The final ternary silicide phase has'an Mlectrical resistivity of about 60 μΩ-cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ting, C., Iyer, S., Osburn, C., Hu, G. and Schweighart, A., Proc. First Intern. Symp. VLSI Science and Technology, vol.82–7, (Electroch. Soc., Pennington, 1982), p. 213.Google Scholar
2. lyer, S., Ting, C. and Fryer, P., J. Electrochem. Soc. 132, 2240 (1985).Google Scholar
3. Wei, C.S., Van der Spiegel, J. and Santiago, J., Thin Solid Films, 118, 155 (1984).CrossRefGoogle Scholar
4. Tanielian, V., Lajos, R. and Blackstone, S., J. Electrochem. Soc. 132, 1456 (1985).CrossRefGoogle Scholar
5. Kato, H. and Nakamura, Y., Thin Solid Films, 43, 135 (1976).CrossRefGoogle Scholar
6. Santiago, J., Wei, C.S. and Van der Spiegel, J., Mat. Lett., 2, 477 (1984).CrossRefGoogle Scholar
7. Park, H., Sachitano, J, Eiden, G., Lane, E. and Yamaguchi, T., J. Vac. Sci. Tech. A 2 (2), 259 (1984).CrossRefGoogle Scholar
8. Tu, K., Hammer, A. and Olowolafe, J., J. Appl. Phys. 51, 1663 (1980).CrossRefGoogle Scholar
9. Babcock, S. and Tu, K., J. Appl. Phys. 53, 6898 (1982).CrossRefGoogle Scholar
10. Harris, J., Lau, S. and Nicolet, M.-A., J. Electrochem. Soc. 123, 120 (1976).CrossRefGoogle Scholar
11. Nava, F., rNobili, C., Ferla, G., Iannuzzi, G., Queirolo, G. and Celotti, O., J. Appl. Phys. 54, 2434 (1983).CrossRefGoogle Scholar
12. Tu, K. and Mayer, J., Thin Films - Interdiffusion and Reactions, edited by Poate, J., Tu, K. and Mayer, J. (J. Wiley, New York, 1978), Chpt. 12.Google Scholar
13. Mu-Erka, S., and Fraser, D., J. Appl. Phys. 51, 342 (1980).Google Scholar
14. Okamoto, T., Tsukamoto, K., Shimizu, M., and Matsukawa, T., J. Appl. Phys. 57, 5251 (1985).CrossRefGoogle Scholar
15. Siegal, T., Santiago, J. and Van der Spiegel, J., presented at the 1985 MRS Fall Meeting, Boston, MA, 1985.Google Scholar
16. Wei, C.S., Van der Spiegel, J., Santiago, J. and Seiberling, L., Laser and Ion-Beam Interaction with Solids, edited by Biegelson, D., Rozgonyi, G. and Shank, C., (Elsevier Science Publ., New York, 1985), p. 465.Google Scholar
17. ASTM card No. 6-0599, Powder Diffractionn File, JCPDS, 1984.Google Scholar