Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:11:57.019Z Has data issue: false hasContentIssue false

Radiative and Non-Radiative Processes for the light Emission from Porous Silicon

Published online by Cambridge University Press:  28 February 2011

J. C. Vial
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
A. Bsiesy
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
G. Fishman
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
F. Gaspard
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
R. Herino
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
M. Ligeon
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
F. Muller
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
R. Romestain
Affiliation:
L.S.P. CNRS-Université J. Fourier de Grenoble, B.P. 87 -38402 St Martin d'Héeres —, France
R. M. Macfarlane
Affiliation:
I.B.M. Almaden Research Center, 650 Harry road, San Jose California. 95120-, USA
Get access

Abstract

Highly porous silicon, well passivated via an anodic oxidation process, is a stable and efficient visible light emitter showing a 3% photoluminescence efficiency at room temperature. Luminescence decay times are on the order of 100 μs at room temperature and 10 ms at low temperature. Above room temperature the de-excitation is dominated by non-radiative processes well describe by a tunnelling escape of carriers from confined regions. The “anomalous” luminescence behaviour showing a dramatic increase of the lifetimes upon cooling associated with a decrease of the intensity is explained by the temperature dependence of the effective radiative recombination rates due to a population redistribution among two excited states with very different radiative relaxation rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Billat, S., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R. and Vial, J.C. in Light Emission from Silicon edited by Iyer, S. S., Canham, L. T. and Collins, R. T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992) pp. 215218.Google Scholar
3. Richter, A., Steiner, P., Kozlowski, F. and Lang, W., IEEE Electron. Device lett. 12, 12 (1991).Google Scholar
4. Dimaria, D. J., Curtley, J. R., Pakulis, E. J., Dong, D. W., Kuan, T. S., Pasavento, F. L., Theis, N. and Cutro, J. A., J. Appl. Phys. 56, 401 (1984).Google Scholar
5. Takagi, H., Ogawa, H., Yamagazaki, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
6. Kawaguchi, T. and Miyazima, S., presented at the 1992 A.P.S. March meeting, Indianapolis (unpublished).Google Scholar
7. Vial, J.C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarlane, R.M., Phys Rev. B 45, 14171 (1992).Google Scholar
8. Vial, J.C., Billat, S., Bsiesy, A., Fishman, G., Gaspard, F., Herino, R., Ligeon, M., Madéore, F., Mihalcescu, I., Muller, F. and Romestain, R., Physica B to be published.Google Scholar
9. Hybertsen, M. S. in Light Emission from Silicon edited by Iyer, S. S., Canham, L. T. and Collins, R. T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992) pp. 179184.Google Scholar
10. Petrova-Koch, V., Kozlowski, F., Fleischmann, A. and Efrros, Al., in The physics of semiconductors volume 3, edited by Anastassakis, E. M. and Joannopoulos, J. D., (20th I.C.P.S. proc, World Scientific edition, London, 1991) pp. 23832386.Google Scholar
11. Proot, J.P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
12. Perry, C. H. and Lu, F., Appl. Phys. Lett. 60, 3117, (1992).Google Scholar
13. Zheng, X. L., Wang, W. and Chen, H.C., Appl. Phys. Lett. 60, 986, (1992).Google Scholar
14. Street, R. A., Pys Rev B 23, 861, (1981).Google Scholar
15. Cuthbert, J. D. and Thomas, D. G., Phys. Rev. 154, 763, (1967).Google Scholar
16. Runciman, W. A. and Wong, E. Y., J. Chem. Phys. 71, 1838, (1979).Google Scholar
17. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J. and Brumhead, D., to be published.Google Scholar
18. Merle, J.C., Capizzi, M., Fiorini, P. and Frova, A., Phys. Rev. B 17, 4821, (1978).Google Scholar
19. Davies, G., Canham, L. T. and Lightowlers, C., J. Phys. C 17, L173, (1984).Google Scholar
20. Scholl, U., Thonke, K. and Sauer, R., Phys. Stat. Solid. B 137, 305, (1986).Google Scholar
21. Elliott, R. J., in Polarons and Excitons, edited by Kuper, C. G. and Whitfield, G. D. (Oliver and Boyd, Edinburgh, 1963) p. 269.Google Scholar