Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:54:31.888Z Has data issue: false hasContentIssue false

Pulsed Laser Crystallization of Amorphous Silicon Films: Effects of Substrate Temperature and Laser Shot Density

Published online by Cambridge University Press:  21 February 2011

R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
Get access

Abstract

A recent report on pulsed laser crystallization of a-Si thin films concluded that substrate bias temperatures up to 400°C in combination with laser fluences below 500 mJ/cm2 had little effect on grain size and transport properties. The current report describes the effects of substrate bias temperature up to 500°C and laser fluence up to 540 mJ/cm2 on grain size, mobility and Si (111) x-ray peak intensities. Results indicate that substrate bias temperatures above 400°C, in combination with high laser shot densities and large laser beam spot energies (> 500 mJ/cm2), are a factor in Improving these film properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, R. I., Anderson, G. B., Ready, S. E., Boyce, J. B., Mat. Res Soc. Proc. 219, 407(1991).Google Scholar
2. Kuriyama, H., et al, IEEE International Electron Meeting, Wash. D.C. (1991).Google Scholar
3. Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).Google Scholar
4. Sameshima, T., Hara, M., and Usui, S., Polycrystalline Semiconductors II, eds. Werner, J. H. and Strunk, H. P., Springer Proceedings in Physics, Vol. 54 (Springer-Verlag, Berlin, 1991).Google Scholar
5. Anderson, G. B., Bachrach, R. Z., Winer, K., Boyce, J. B., Ponce, F. A., Johnson, R. I., and Ready, S. E., Mat. Res. Soc. Proc. 192, 669 (1990).Google Scholar
6. Winer, K., Anderson, G. B., Ready, S. E., Bachrach, R. Z., Johnson, R. I., Ponce, F. A., and Boyce, J. B., Appl. Phys. Lett. 57, 2222 (1990).Google Scholar
7. Bachrach, R.Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., Electron, J.. Materials 19, 241 (1990).Google Scholar
8. Bachrach, R.Z., Boyce, J. B., Ready, S. E., Anderson, G. B., Polycrystalline Semiconductors II, eds. Werner, J. H. and Strunk, H. P., Springer Proceedings in Physics, Vol. 54 (Springer-Verlag, Berlin, 1991), pp. 330341.Google Scholar
9. Givargizov, E. I., Oriented Crystallization on Amorphous Substrates, (Plenum, New York), p. 39.Google Scholar
10. Yater, J. A. and Thompson, M. O., Phys. Rev. Lett. 63, 2088 (1989).Google Scholar