Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:59:36.887Z Has data issue: false hasContentIssue false

Progress in Consolidation of Amorphous Zr-based Powder into Bulk Metallic Glass

Published online by Cambridge University Press:  11 February 2011

Suveen N. Mathaudhu
Affiliation:
Texas A&M University, Dept. of Mechanical Engineering, College Station, TX 77843–3123, U.S.A.
Jae Taek Im
Affiliation:
Texas A&M University, Dept. of Mechanical Engineering, College Station, TX 77843–3123, U.S.A.
Robert E. Barber
Affiliation:
Texas A&M University, Dept. of Mechanical Engineering, College Station, TX 77843–3123, U.S.A.
Iver E. Anderson
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, U.S.A.
Ibrahim Karaman
Affiliation:
Texas A&M University, Dept. of Mechanical Engineering, College Station, TX 77843–3123, U.S.A.
Get access

Abstract

Equal channel angular extrusion (ECAE) is used to consolidate amorphous Vitreloy 106a (Zr58.5Nb2.8Cu15.6Ni12.8Al10.3) powder into bulk metallic glass. Consolidations are performed on gas atomized powder containing 1280 ppmw oxygen encapsulated in copper cans and 780 ppmw oxygen powder encapsulated in nickel cans in a 90° die-angle tool at temperatures above the glass transition temperature (Tg) but below the rapid crystallization temperature (Tx), in the supercooled liquid region (ΔT). Results show that V106a is successfully consolidated to nominal full density after one extrusion pass. Good particle-to-particle bonding and significant particle deformation are observed in the consolidated alloy. A lower oxygen content is beneficial due to the larger undercooled region and the additional time for processing. The low oxygen content material shows little change in thermal stability after being consolidated when compared to the original powder but fine interparticle cracks are observed in some of the consolidates. ECAE appears to be a viable method for consolidating amorphous metal powders into bulk amorphous metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, W.L., Mat. Res. Soc. Symp. Proc. 554, 311 (1999).Google Scholar
2. Johnson, W.L., JOM 54 (3), 40 (2003).Google Scholar
3. Inoue, A., Kimura, H.M., Sasamori, K. and Masumoto, T., Mater. Trans. JIM. 35 (2), 85 (1994).Google Scholar
4. Hays, C.C., Kim, C.P. and Johnson, W. L., Phys. Rev. Lett. 84 (13), 2901 (2000).Google Scholar
5. Hashimoto, K., in Current Topics in Amorphous Material Physics and Technology, edited by Sakurai, Y., Hamakawa, Y., Masumoto, T., Shirae, K. and Suzuki, K. (Elsevier Science Publishers, New York, NY, 1993) p. 167.Google Scholar
6. Atzmon, M., Unruh, K.M. and Johnson, W.L., J. Appl. Phys. 58, 3865 (1985).Google Scholar
7. Kawamura, Y. and Inoue, A., J. Jpn. Inst. Met. 57, 804 (1993).Google Scholar
8. Kawamura, Y. and Inoue, A., Scr. Metall. 29, 25 (1993).Google Scholar
9. Kato, H., Kawamura, Y. and Inoue, A., Mater. Trans. JIM, 37, 70 (1996).Google Scholar
10. Sordelet, D.J., Rozhkova, E., Huang, P.. Wheelock, P.B., Besser, M.F., Kramer, M.J., Calvo-Dahlborg, M. and Dahlborg, U., J. Mater. Res., 17, 186 (2003).Google Scholar
11. Morris, D.G., in Rapidly Quenched Metals, Vol II, edited by Steeb, S. and Warlimont, H. (Elsevier Science Publishers, New York, NY, 1985) p. 1751.Google Scholar
12. Kawamura, Y. and Takagi, M., Mater. Sci. Eng., 98, 948 (1988).Google Scholar
13. Hasegawa, R. and Hathaway, R.E., J. Appl. Phys., 57, 3566 (1985).Google Scholar
14. Segal, V. M., Mat. Sci. Eng. A., A197, 157 (1995).Google Scholar
15. Cornwell, L.R., Hartwig, K.T., Goforth, R.E. and Semiatin, S.L., Mat. Char., 37, 295 (1996).Google Scholar
16. Segal, W. M., Reznikov, V.I., Drbyshevskiy, A.E. and Kopylov, V.L., Rus. Metall. Engl. Trans., 1, 115 (1981).Google Scholar
17. Hartwig, K.T., Zapata, H., Parasiris, A. and Mathaudhu, S.N., in Powder Materials: Current Research and Practices, edited by Marquis, F.D.S., Thadhani, N.N. and Barrera, E.V. (TMS Publishing, Warrendale, PA, 2001) p. 211.Google Scholar
18. Zapata, H., M.S. Thesis, Texas A&M University, 1998.Google Scholar
19. Robertson, J., Im, J-T., Karaman, I., Hartwig, K.T. and Anderson, I.E., J. Noncrys. Sol. 317, 144 (2003)Google Scholar
20. Hays, C. C., Shroers, J., Geyer, U., Bossuyt, S., Stein, N. and Johnson, W.L., Mater. Sci. Forum. 343, 103 (2000).Google Scholar
21. Vaidyannathan, R., Dao, M., Ravichandran, G. and Suresh, S., Acta Mater., 49, 3781 (2001).Google Scholar
22. Kim, J.-J., Choi, Y., Suresh, S. and Argon, A.S., Science, 295, 654 (2003).Google Scholar
23. Karaman, I., Robertson, J., Im, J-T., Mathaudhu, S.N., Luo, Z.P. and Hartwig, K.T., accepted April 2003 for publication in Met. Mater. Trans. A.Google Scholar