Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:02:12.507Z Has data issue: false hasContentIssue false

Piezo-semiconductive quasi-1D conical NWs for high performance nanodevices

Published online by Cambridge University Press:  18 June 2013

Rodolfo Araneo*
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Giampiero Lovat
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Andrea Notargiacomo
Affiliation:
Department of Electronic Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133, Rome
Antonio Rinaldi
Affiliation:
University of L'Aquila, International Research Center for Mathematics & Mechanics of Complex System (MEMOCS), Via S. Pasquale, 04012, Cisterna di Latina (LT), Italy ENEA ,C.R. Casaccia, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
Get access

Abstract

Conical nanowires appear to be very versatile nanostructures for fabricating high performance piezoelectric nanodevices, for possible applications in the fields of mechanical sensing, piezotronics or piezo-photo-tronics. The results discussed in the present work are aimed at providing useful guidelines for the design of such devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z. L., Song, J. H., Science, 312, 242246 (2006).CrossRefGoogle ScholarPubMed
Wang, X. D., Song, J. H., Liu, J., Wang, Z. L., Science 316, 102105 (2007).CrossRefGoogle Scholar
Starr, M. B., Shi, J., Wang, X., Angewandte Chemie, 51, 59625966 (2012).CrossRefGoogle Scholar
Wang, Z. L., Nano Today 5, 540 (2010).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Wang, Z. L., Adv. Mater., 23, 30043013 (2011).CrossRefGoogle Scholar
Wang, X. D., Zhou, J., Song, J. H., Liu, J., Xu, N. S., Wang, Z. L., Nano Lett., 6, 27682772 (2006).CrossRefGoogle Scholar
Espinosa, H. D., Bernal, R. A., M.-Jolandan, M., Adv. Mater., 24, 46564675 (2012)CrossRefGoogle Scholar
Araneo, R., Lovat, G., Burghignoli, P., Falconi, C., Adv. Mater., 24, 4719–24 (2012).CrossRefGoogle Scholar
Romano, G., Mantini, G., Di Carlo, A., D'Amico, A., Falconi, C., Wang, Z. L., Nanotechnology, 22, 465401 (2011).CrossRefGoogle Scholar
Vasileska, D., Goodnick, S. M., Klimeck, G., Computational Electronics, CRC Press, New York, NY, USA 2010.Google Scholar
Gao, Y., Wang, Z. L., Nano Lett., 8, 24992505 (2007).CrossRefGoogle Scholar
Gao, Y., Wang, Z. L., Nano Lett., 9, 1103 (2009).CrossRefGoogle Scholar
Mantini, G., Gao, Y., D’Amico, A., Falconi, C., Wang, Z. L., Nano Research, 2, 624629 (2009)CrossRefGoogle Scholar
Falconi, C., Mantini, G., D’Amico, A., Wang, Z. L., Sensor. Actuat. B - Chem., 139, 511 (2009).CrossRefGoogle Scholar
Bateman, T. B., Appl, J.. Phys., 33, 3309 (1962).Google Scholar
Carlotti, G., Socino, G., Petri, A., Verona, E., Appl. Phys. Lett., 51, 18891891 (1987).CrossRefGoogle Scholar
Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M., Grundmann, M., J. Appl. Phys., 93, 126133 (2003).CrossRefGoogle Scholar
Xu, Y.-N, Ching, W. Y., Phys. Rev. B: Cond. Matter, 48, 43354351 (1993).CrossRefGoogle Scholar
Shan, W., Walukiewicz, W., Ager, J. W., Yu, K. M., Zhang, Y., Mao, S. S., Kling, R., Kirchner, C., Waag, A., Appl. Phys. Lett., 86, 153117 (2005).CrossRefGoogle Scholar
Perlasamy, C., Chakrabarti, P., J. Appl. Phys., 110, 054306, (2011)CrossRefGoogle Scholar
Park, S. S., Lee, J. M., Kim, S. J., Kim, S. W., Yi, M. S., Kim, S. H., Maeng, S., Fujita, S., Nanotechnology, 19, 245708, (2008).CrossRefGoogle Scholar
Wang, X., Ding, Y., Yuan, D., Hong, J., Liu, Y., Wong, C. P., Hu, C., Wang, Z. L., Nano Research, 5, 412420 (2012).CrossRefGoogle Scholar
Cho, S., Lee, B. R., Kim, H., Park, D., Lee, K., Materials Letters, 63, 20252028 (2009).CrossRefGoogle Scholar
Zhu, G., Wang, A. C., Liu, Y., Zhou, Y., Wang, Z. L., Nano Lett., 12, 3086–90 (2012).CrossRefGoogle Scholar
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z. L., Nature Nanotechnology, 5, 366373 (2010).CrossRefGoogle Scholar
Zhu, G., Yang, R., Wang, S., Wang, Z. L., Nano Lett..,10, 31513155 (2010).CrossRefGoogle Scholar
Lin, Y. F., Song, J., Ding, Y., Lu, S. Y., Wang, Z. L., Adv. Mater., 20, 31273130 (2008).CrossRefGoogle Scholar
Lin, Y. F., Song, J., Ding, Y., Lu, S. Y., Wang, Z. L., Appl. Phys. Lett., 92, 022105 (2008).CrossRefGoogle Scholar
Lu, M., Song, J., Lu, M., Gao, Y., Chen, L., Wang, Z. L., Chen, M., Nano Lett., 9, 12231227 (2009).CrossRefGoogle Scholar
Wang, X., Song, J., Zhang, F., He, C., Hu, Z., Wang, Z. L., Adv. Mater., 22, 21552158 (2010).CrossRefGoogle Scholar
Araneo, R., Falconi, C., submitted to Nanotechnology (2013).Google Scholar