Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:39:28.938Z Has data issue: false hasContentIssue false

Picosecond Time-Resolved Optical Studies of Plasma Formation and Lattice Heating in Silicon

Published online by Cambridge University Press:  22 February 2011

L. A. Lompré
Affiliation:
C.E.N. Saclay, DPh.G./S.P.A.S., 91191 Gif-sur- Yvette, France;
J. M. Liu
Affiliation:
Department of Electrical and Computer Engineering, Bell Hall, Suny at Buffalo, Amherst, NY 14260
H. Kurz
Affiliation:
Division of Applied sciences, Harvard University, Cambridge, MA 02138;
N. Bloembergen
Affiliation:
Division of Applied sciences, Harvard University, Cambridge, MA 02138;
Get access

Abstract

Time-resolved studies of reflectivity and transmission at 0.532 μm, 1.064 vm and 2.8 μm of thin silicon films following irradiation with ps pulses at 0.532 μm have been performed. The formation of the electron-hole plasma and the evolution of lattice temperature is investigated as a function of pump fluence and time delay. Quantitative determination of the plasma densities and lattice temperature up to the melting temperature shows that the maximum plasma density is limited to ∼ 1 × 1021 cm−3 by Auger recombination even on a time scale of picoseconds at fluences sufficient to cause the phase transition. The thermal nature of the phase transition is confirmed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Auston, D.H., Surko, C.M., Venkatesan, T.N.C., Slusher, R.E., and Golovchenko, J.A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
2.Liu, J.M., Yen, R., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 39, 755 (1981);Google Scholar
2a.Yen, R., Liu, J.M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. A 27, 153 (1982).Google Scholar
3.Liu, J.M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 41, 643 (1982).Google Scholar
4.von der Linde, D. and Fabricius, N., Appl. Phys. Lett. 41, 991 (1982).Google Scholar
5.Lompé, L.A., Liu, J.M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 43, 168 (1983).Google Scholar
6.Lietoila, A. and Gibbons, F., Appl. Phys. Lett. 40, 624 (1982).Google Scholar
7.van Driel, H., Lompré, L.A., and Bloembergen, N., Appl. Phys. Lett., to be published.Google Scholar
8.Lompré, L.A., Liu, J.M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett., to be published (Jan. 1984).Google Scholar
9.Jellison, G.E. and Modine, F.A., Appl. Phys. Lett. 41 (2), 180 (1982).Google Scholar
10.Compaan, A., Lee, M.C., Loo, H.W., Trott, G.J., and Aydinli, A., J. Appl. Phys. 54 (10), 5950 (1983).Google Scholar
11.Svantesson, K.G., J. Phys. D 12, 425 (1979).Google Scholar