Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:23:38.411Z Has data issue: false hasContentIssue false

Photoconductive (PC) and Photovoltaic (PV) Dual-Mode Operation III-V Quantum well Infrared Photodetectors for 2–14 μm IR Detection

Published online by Cambridge University Press:  15 February 2011

Sheng S. Li
Affiliation:
Dept. of Electrical Engineering, University of Florida, Gainesville, FL 32611
Y. H. Wang
Affiliation:
Dept. of Electrical Engineering, University of Florida, Gainesville, FL 32611
M. Y. Chuang
Affiliation:
Dept. of Electrical Engineering, University of Florida, Gainesville, FL 32611
P. Ho
Affiliation:
Electronics Lab., General Electric Co., Syracuse, NY 13221
Get access

Abstract

We present four new types of III-V quantum well infrared photodetectors (QWIPs) operating in photoconductive (PC) and photovoltaic (PV) modes for the wavelength range from 2 to 14 μm. These dual-mode (DM) operation QWIPs were grown by the MBE technique using GaAs/AlGaAs, AlAs/AlGaAs, and InGaAs/InAlAs material systems. Based on the bound-to-miniband (BTM) and the enhanced bound-to-continuum (BTC) intersubband transition schemes, these detectors provide the features of large absorption coefficient, low dark current, and high detectivity in the wavelength of interest, and show promising for use in large area IR focal plane array image sensor applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett. 50, 1092 (1987).CrossRefGoogle Scholar
2. Yu, L. S. and Li, S. S., Appl. Phys. Lett. 59, 1332 (1991); Y. H. Wang, S. S. Li, and Pin Ho, Appl. Phys. Lett. 62, 621 (1993).Google Scholar
3. Ralston, J. D., Schneider, H., Gallagher, D. F., Fuchs, K. K., Bittner, P., Dischler, B., and Koidl, P., J. Vac. Sci. Technol. B, 998 (1992).Google Scholar
4. Levine, B. F., Bethea, C. G., Hasnain, G., Shen, V. O., Pelve, E., Abbott, R. R., and Hseih, S. J., Appl. Phys. Lett. 56, 851 (1990).Google Scholar
5. Wang, Y. H.,Li, S. S., and Pin Ho, Appl. Phys. Lett. 62, 93 (1993).CrossRefGoogle Scholar
6. Goossen, K. W., Lyon, S. A., and Alavi, K., Appl. Phys. Lett. 52, 1701 (1988).Google Scholar
7. Levine, B. F., Gunapala, S. D., and Kopf, R. F., Appl. Phys. Lett. 58, 1551 (1991).Google Scholar
8. Schneider, H., Kheng, K., Ramsteiner, M., Ralston, J. D., Fuchs, F., and Koidl, P., Appl. Phys. Lett. 60, 1471 (1992).CrossRefGoogle Scholar
9. Yu, L. S., Li, Sheng S., and Pin, Ho, Electron. Lett. 28, 1468 (1992).Google Scholar