Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:02:38.671Z Has data issue: false hasContentIssue false

Phase Relation and Microstructure of NbCr2 Laves Intermetallics in Ternary Nb-Cr-X Alloy Systems

Published online by Cambridge University Press:  15 February 2011

M. Yoshida
Affiliation:
Miyagi National College of Technology, Natori, Miyagi Prefecture, 981–12, Japan
T. Takasugi
Affiliation:
T. Takasugi, Institute for Materials Research, Tohoku University, Katahira 2–1–1, Aoba-ku, Sendai, 980–77, Japan
Get access

Abstract

The isothermal phase diagrams of ternary alloy systems Nb-Cr-V and Nb-Cr-Mo are determined by metallography, X-ray diffraction (XRD) and transmission electron microscopy (TEM) equipped with energy dispersive X-ray (EDX). In two alloy systems, the C15 NbCr2 Laves phases are equilibrated directly with bcc solid solution without forming any intermediate phases. Relatively large amount of ternary elements V and Mo are soluble in the C15 NbCr2 Laves phases. It is shown that the C15 Laves phases extend along directions so that V occupies Cr site while Mo occupies Nb site. Also, characteristic structure containing micro twins and stacking faults is observed in the C15 Laves phase alloyed with Mo. Bcc phase has a wider solid solution range in the X(=V and Mo)-rich side than the Nb-rich and Cr-rich sides. A variety of duplex microstructures are observed depending on alloy system and alloy composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Massalski, T. L., Murray, J. L., Bennett, L. H. and Baker, H., in Binary Alloy Phase Diagram, American Society for Metals, Metals Park, OH, (1986).Google Scholar
2. Thomas, D. J. and Perepezko, J. H., Mater. Science and Engng., A156, 97 (1992).Google Scholar
3. Goldschmid, H. J. and Brand, J. A., J. of Less-Common Metals, 3, 44 (1961).Google Scholar
4. Shah, D. M. and Anton, D. L., High-Temperature Ordered Intermetallics Alloys TV, edited by Johnson, L., Pope, D. P. and Stiegler, J. O., Mater. Res. Soc. Symp. Proc. vol. 213, Pittsburgh, PA, (1991), p. 63.Google Scholar
5. Takasugi, T., Yoshida, M. and Hanada, S., J. Mater. Res., 10, 2463 (1995).Google Scholar
6. Takasugi, T., Yoshida, M. and Hanada, S., Acta Materialia, 44, 669 (1996).Google Scholar
7. Yoshida, M., Takasugi, T. and Hanada, S., High-Temperature Ordered Intermetallics Alloys VI, ed. by Horton, J., Baker, I., Hanada, S., Noebe, R. D. and Schwarz, D., Mat. Res. Soc. Symp. Proc, vol. 364, Pittsburgh, PA, (1995), p. 1395.Google Scholar
8. Pope, D. P. and Chu, F., Phil. Mag. A, 69, 409 (1994).Google Scholar
9. Chu, F., Ormeci, A. H., Mitchell, T. E., Wills, J. M., Thoma, D. J., Albers, R. C and Chen, S. P., Phil. Mag. Letters, 72, 147 (1995).Google Scholar
10. Yoshida, M. and Takasugi, T., to be published.Google Scholar
11. Grujicic, M., Tangrila, S., Cavin, O. B., Porter, W. D. and Hubbard, C. R., Mater. Sci. and Engng., A160, 37 (1993).Google Scholar
12. Takasugi, T., Yoshida, M. and Hanada, S., Proc. of Design Fundamentals of Composites, Intermetallics and Metal-Ceramics Systems, TMS, (1996), p. 235.Google Scholar
13. Yoshida, M. and Takasugi, T., to be published.Google Scholar