Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T03:58:55.279Z Has data issue: false hasContentIssue false

Performance enhancement of TiSi2 coated Si nanocrystal memory device

Published online by Cambridge University Press:  31 January 2011

Huimei Zhou
Affiliation:
[email protected], UCR, 3433 Kentucky St., Riverside, California, 92507, United States
Jianlin Liu
Affiliation:
[email protected], UCR, Electrical Engineering, Riverside, California, United States
Get access

Abstract

Self-aligned TiSi2 coated Si nanocrystal nonvolatile memory is fabricated. This kind of MOSFET memory device is not only thermally stable, but also shows better performance in charge storage capacity, writing, erasing speed and retention characteristics. This indicates that CMOS compatible silicidation process to fabricate TiSi2 coated Si nanocrystal memory is promising in memory device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
2 Shi, Y., Saito, K., Ishikuro, H., and Hiramoto, T., Jpn. J. Appl. Phys. 38, 2453 (1999).Google Scholar
3 Ohba, R., Sugiyama, N., Uchida, K. and etc., IEEE Trans. Electron Devices 49, 1392 (2002).Google Scholar
4 Wan, Q., Lin, C. L., Liu, W. L., and Wang, T. H., Appl. Phys. Lett. 82, 4708 (2003).Google Scholar
5 Liu, Z. T., Lee, C., Narayanan, V., and etc., IEEE Trans. Electron Devices 49, 1606 (2002).Google Scholar
6 Lee, C. H., Meteer, J., Narayanan, V., and Kan, E. C., J. Electron. Mater. 34, 1 (2005).Google Scholar
7 Lee, J. J. and Kwong, D. L., IEEE Trans. Electron Devices 52, 507 (2005).Google Scholar
8 Chang, T. C., Liu, P. T., Yan, S. T. and Sze, S. M., Electrochem. Solid-State Lett. 8, G71 (2005).Google Scholar
9 Choi, S., Kim, S. S., Chang, M., Hwang, H. S., and etc., Appl. Phys. Lett. 86, 123110 (2005).Google Scholar
10 Chen, J. H., Yoo, W. J., Chan, D. S. H., and Tang, L. J., Appl. Phys. Lett. 86, 073114 (2005).Google Scholar
11 Lin, Y. H., Chien, C. H., Lin, C. T., and etc., IEEE Electron Device Lett. 26, 154 (2005).Google Scholar
12 Huang, S. Y., Arai, K., Usami, K., and Oda, S., Nanotechnology 3, 210 (2004).Google Scholar
13 Wolf, I. De., Howard, D. J., Lauwers, A., Maex, K., and etc., Appl. Phys. Lett. 70, 2262 (1997).Google Scholar
14 Ng, T. H., Chim, W. K., Choi, W. K., Ho, V. and etc., Appl. Phys. Lett., 84, 4385 (2004).Google Scholar
15 King, Ya-Chin, King, Tsu-Jae, and Hu, Chenming, IEDM Tech. Dig. Page 115 (1998).Google Scholar
16 Yoon, Tae-Sik, Kwon, Jang-Yeon, Lee, Dong-Hoon and etc., J. Appl. Phys. 87, 2449 (2000).Google Scholar
17 Zhu, Y., Zhao, D. T., Li, R. G., and Liu, J. L., Appl. Phys. Lett. 88, 103507 (2006).Google Scholar
18 Gambino, J. P., and Colgan, E. G., Material Chemistry and Physics 52, 99 (1998).Google Scholar
19 Moroz, Victor and Okada, Takako, Mat. Res. Soc. Symp. Vol. 611 (2000).Google Scholar
20 Fornara, P., Denorme, S., Berranger, E. de and etc., Microelectronics Journal, 29, 7181 (1998).Google Scholar
21 Zhu, Y., Zhao, D., Li, R., and Liu, J., Journal of Applied Physics 97, 034309 (2005).Google Scholar