Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:46:40.111Z Has data issue: false hasContentIssue false

Particle Shape Effects on Optical Absorption in Semiconductor Colloids

Published online by Cambridge University Press:  28 February 2011

P. D. Persans
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
E. Lu
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
J. Haus
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
G. Wagoner
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
A. F. Ruppert
Affiliation:
Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

The absorption spectrum of small MoS2 particles in colloidal dispersions differs significantly from that of bulk material. In particular the amplitude and position of exciton absorption peaks shifts when small particles are suspended in a dielectric fluid. Our results are compared with predictions of a Maxwell-Garnett effective medium theory for ellipsoidal particles. We find that particle aspect ratio is an important parameter for interpreting these changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See for example - AIP Conference Proceedings, 40, (AIP, NY, 1978).Google Scholar
2.Research opportunities on clusters and cluster assembled materials - A Department of Energy, Council on Materials Science Panel Report”, J. of Mater. Res., 4, 704736, (1989).Google Scholar
3. Brus, L., J. Chem. Phys., 80, 4003, (1984).Google Scholar
4. Persans, P. D., Mat. Res. Soc. Symp. Proc. (Fall 1989), in press, (1990).Google Scholar
5. Ekimov, A. I., Onuschenko, A. A., and Tsekhomskii, V., Fiz. Khim. Stekla 6, 511, (1980).Google Scholar
6. Nemanich, R. J., Solin, S. A., and Martin, R. M., Phys. Rev. B, 23, 6348, (1981).Google Scholar
7. Schmitt-Rink, S., Miller, D. A. B., and Chemla, D. S., Phys. Rev. B, 35, 8113, (1987).Google Scholar
8. Alivisatos, A. P., Harris, T. D., Carroll, P. J., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys., 90, 3463, (1989).Google Scholar
9. Alivisatos, A. P., Harris, T. D., Brus, L. E., and Jayaraman, A., J. Chem. Phys. 89, 5979, (1988).Google Scholar
10. Zhao, X., Schroeder, J., and Persans, P. D., Mat. Res. Soc. Symp. Proc. (Fall 1989), in press, (1990).Google Scholar
11. Lu, E., Persans, P. D., Ruppert, A. F., and Chianelli, R. R., Mat. Res. Soc. Symp. Proc. (Fall 1989), in press, (1990).Google Scholar
12. Beal, A. R. and Hughes, H. P., J. Phys. C, 12, 881, (1979).Google Scholar
13. Stacy, A. M. and Hodul, T. H., J. Phys. Chem. Sol. 46, 405, (1985).Google Scholar
14. Wilson, J. A. and Yoffe, A. D., Adv. Phys. 18, 193,(1969).Google Scholar
15. , Evans and , Young, Proc. Rotal Soc. A, 298, 74, (1967).Google Scholar
16. Beal, A. R., Knights, J. C., Liang, W. Y., J. Chem. Phys., 5, 3540, (1972).Google Scholar
17. Haus, J. W., Inguva, R., and Bowden, C. M., Phys. Rev. A, 40, 5729, (1989).Google Scholar
18. Haus, J. W., Kalyaniwalla, N., Inguva, R., Bloemer, M., and Bowden, C. M., J. Opt. Soc. B, 6, 797, (1989).Google Scholar