Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:05:41.807Z Has data issue: false hasContentIssue false

Oxygen Diffusion in Tantalum Oxide Metal-Oxide-Metal Capacitor Structures

Published online by Cambridge University Press:  10 February 2011

J. P. Chang
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
M. L. Steigerwald
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
R. M. Fleming
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
R. L. Opila
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
G. B. Alers
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

We have studied structures used in MOM capacitors including Ta2O5/TiN/Ti, Ta2O5/Ti, Ta2O5/TaN/Ti, Ta2O5/WN/Ti, and Ta2O5/M where M = Ta, Pt, W, Al, and Si using X-Ray Photoelectron Spectroscopy. We find that Ti and Al are able to reduce the Ta2O5 to Ta, forming oxides of Ti and Al, respectively. The diffusion barrier TiN hampers the diffusion of oxygen and therefore postpone the reduction of Ta2O5 to higher temperatures. The oxygen migrates from the Ta2O5 layer and through the TIN layer to the Ti layer during the heat treatment. As judged by the temperatures at which the reduction of Ta2O5 occurs, TaN and WN are more effective oxygendiffusion barriers than TiN. Leakage current observed in AI/Ta2O5/TaN/Ta capacitors is one to two orders of magnitude lower than that observed in Al/Ta2O5/TiN/Ti capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aoyama, T., Saida, S., Okayama, Y., Fujisaki, M., Imai, K., and Arikado, T., J. Electrochem. Soc. 143 (3), 977 (1996).10.1149/1.1836568Google Scholar
2. Chiu, F., Wang, J., Lee, J. Y., and Wu, S. C., J. Appl. Phys. 81 (10), 6911 (1997).10.1063/1.365252Google Scholar
3. Cava, R. J., and Krajewski, J. J., J. Appl. Phys. 83 (3), 1613 (1998).10.1063/1.366873Google Scholar
4. Lee, M., Lee, H., Park, B., Chung, U., Koh, Y., and Lee, M., 1996 International Electron Devices Meeting, 27.3.1, IEEE, San Francisco, CA 1996.Google Scholar
5. Atanassova, E., Dimitrova, T., and Koprinarova, J., Appl. Surf. Sci., 84, 193–, 1995.10.1016/0169-4332(94)00538-9Google Scholar
6. Cava, R. L., private communication.Google Scholar
7. Sun, S. C. and Chen, T. F., Jpn. J. Appl. Phys., 36, 1346–50, 1997.10.1143/JJAP.36.1346Google Scholar
8. Chang, J. P., Opila, R. L., and Alers, G. B., Technical memorandum, to be published.Google Scholar
9. See, for example, Kishiro, K., Inoue, N., Chen, S.-H., and Yoshimaru, M., Jpn. J. Appl. Phys., 37, 1336–9 (1998).10.1143/JJAP.37.1336Google Scholar
10. See also Chen, K., Yang, G. R., Nielsen, M., Lu, T. M., Rymaszewski, E. J., Appl. Phys. Lett., 70 (3), 399 (1997).10.1063/1.118386Google Scholar
11. Lee, H.-J., Sinclair, R., Lee, M.-B., and Lee, H.-D., J. Appl. Phys., 83 (1) 139–44, (1998).Google Scholar
12. Simple free energy analysis can be deceptive. See, for example, Beyers, R., Sinclair, R., and Thomas, M. E., J. Vac. Sci. Technol., B2, 781–4.Google Scholar