Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:14:25.208Z Has data issue: false hasContentIssue false

Orientation and Boron Concentration Dependence of Si Layer Transfer by Mechanical Exfoliation

Published online by Cambridge University Press:  21 March 2011

Kimmo Henttinen
Affiliation:
VTT Electronics FIN-02044, Finland
Tommi Suni
Affiliation:
VTT Electronics FIN-02044, Finland
Arto Nurmela
Affiliation:
VTT Electronics FIN-02044, Finland
Veli-Matti Airaksinen
Affiliation:
Okmetic Oyj, FIN-01510 Vantaa, Finland
Ilkka Suni
Affiliation:
VTT Electronics FIN-02044, Finland
S.S Lau
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, U.S.A
Get access

Abstract

Mechanical exfoliation strength has been measured in hydrogen implanted <100>, <111> and <110> oriented Si wafers using the crack opening method. The bonding temperature required for exfoliation increases in the order <100>, <111> and <110>. The same method has been applied to study the influence of boron doping on mechanical exfoliation in <100> Si wafers. The required bonding temperature to exfoliate mechanically decreases with increasing doping level independent of the electrical activation of boron. The enhanced crystallization rate of boron doped Si is suggested as a plausible explanation for the result.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruel, M., Electron. Lett. 31, 1201 (1995).Google Scholar
2. En, W.G., Malik, I. J., Bryan, M. A., Farrens, S., F. J., , , Henley, Cheung, N. W., Chan, C., IEEE International SOI Conference Proceedings, Stuart, FL, USA, 5-8 Oct. 1998. New York, NY, USA: IEEE, 1998. p. 163164.Google Scholar
3. Henttinen, K., Suni, I. and Lau, S. S., Appl. Phys. Lett. 76, 2370 (2000).Google Scholar
4. Yun, C. H., Cheung, N. W., Proc. 13th Conf. Ion Implantation Technology, Alpbach, Austria, 17-22 Sept. 2000.Google Scholar
5. Tong, Q.-Y., Scholz, R., Gösele, U., Lee, T.-H., Huang, L.-J., Chao, Y.-L. and Tan, T. Y., Appl. Phys. Lett. 72, 49 (1998).Google Scholar
6. Zheng, Y., Lau, S. S., Höchbauer, T., Misra, A., Verda, R., He, X.-M. and Nastasi, M., J. Appl. Phys. 89, 2972 (2001).Google Scholar
7. Höchbauer, T., Walter, K. C., Schwarz, R. B., Nastasi, M., Bower, R. W. and Ensinger, W., J. Appl. Phys. 86, 4176 (1999).Google Scholar
8. Tong, Q.-Y., Gösele, U., Semiconductor Wafer Bonding, Electrochemical Society Series, Wiley, 1999.Google Scholar
9. Ziegler, J. F., Biersack, J. B. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
10. Weldon, M. K., Marsico, V. E., Chabal, Y. J., Agarwal, A., Eaglesham, D.J., Sapjeta, J., Brown, W. L., Jacobson, D. C., Caudano, Y., Christman, S. B. and Chaban, E. E., J. Vac. Sci. Technol. B 15 (4), 1065 (1997).Google Scholar
11. Grisolia, J., Assayag, G. Ben, Claverie, A., Aspar, B. and Lagahe, C., Appl. Phys. Lett. 76, 852 (2000).Google Scholar
12. Nastasi, M., Höchbauer, T., Misra, A., Verda, R.D., Mayer, J.W., Lau, S.S., Henttinen, K., Suni, I., presented at the 16th International Conference on the Application of Accelerators in Research and Industry, CAARI 2000, Nov. 1-4, 2000, Denton, Texas, USA.Google Scholar