Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:33:36.076Z Has data issue: false hasContentIssue false

Organic Polymer Semiconductor Superlattices

Published online by Cambridge University Press:  25 February 2011

Samson A. Jenekhe
Affiliation:
Department of Chemical Engineering, University of RochesterRochester, New York 14627
Wen-Chang Chen
Affiliation:
Department of Chemical Engineering, University of RochesterRochester, New York 14627
Get access

Abstract

We describe the synthesis and study of the first organic polymer semiconductor superlattices designed as periodic block conjugated copolymers, (−AxBy−)m. The observed variation of electronic spectra and wavelength of the lowest energy absorption maxima with block length y are interpreted in terms of quantum confinement size effects predicted for semiconductor superlattices. The periodic block conjugated copolymers were synthesized by a two-step strategy that ensure strict control of sequence, block length and periodicity. It is suggested that organic semiconductor superlattices provide a rational and systematic approach to the molecular engineering of electronic, optical, nonlinear optical, and electro–optical properties in polymeric materials and hold promise for molecular electronics and molecular photonics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. To whom correspondence should be addressed.Google Scholar
2. Jenekhe, S.A., Nature, 322, 345347 (1986).CrossRefGoogle Scholar
3. Jenekhe, S.A., Macromolecules, 19, 26632664 (1986).CrossRefGoogle Scholar
4. Jenekhe, S.A., In: Proc. Workshop held at Sintra, Portugal, July 28–31, 1986, Alcacer, L., ed., Conducting Polymers, p. 149 (D. Reidel Publishing Co., Doredrecht, (1987).CrossRefGoogle Scholar
5. Jenekhe, S.A. and Hansen, M.K., U.S. Patent 4,694,062, Sept. 15, 1987;Google Scholar
U.S. Patent, 4,711,946, Dec. 8, 1987.Google Scholar
6. Jenekhe, S.A., U.S. Patent 4,717,762, Jan. 5, 1988;Google Scholar
U.S. Patent 4,758,634, July 19, 1988.CrossRefGoogle Scholar
7. Jenekhe, S.A., Macromolecules, in press;Google Scholar
(b) Jenekhe, S.A., in preparation;Google Scholar
(c) Jenekhe, S.A. and Chen, W.C., in preparation.Google Scholar
8. Agrawal, A.K. and Jenekhe, S.A., Chem. Mater., submitted.Google Scholar
9. (a) Lo, S.K., Jenekhe, S.A. and Wellinghoff, S.T., Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals, and Laser Media, Proc. SPIE, 824, 162 (1987);CrossRefGoogle Scholar
(b) Jenekhe, S.A., Lo, S.K. and Flom, S.R., Appl. Phys. Lett., 54, 2524 (1989);CrossRefGoogle Scholar
(c) Jenekhe, S.A., Chen, W.C., Lo, S.K. and Flom, S.R., Appl. Phys. Lett., submitted.Google Scholar
10. Esaki, L. and Tsu, R., IBM J. Res. Dev. 14, 6165 (1970).CrossRefGoogle Scholar
11. Esaki, L., in: Chang, L.L., and Ploog, K. (eds.), Molecular Beam Epitaxy and Heterostructures, 136 (Martinus Nijhoff Publishers, Dordrecht, 1985).Google Scholar
12. Esaki, L. and Chang, L.L. Phys. Rev. Lett. 33, 495498 (1974).Google Scholar
13. Sai–Halasz, G.A., Chang, L.L., Welter, J.M., Chang, C.A. and Esaki, L., Solid State Commun. 27, 935937 (1978).CrossRefGoogle Scholar
14. Dingle, R., Festkorperproblems 15, 2148 (1975).Google Scholar
15. Dingle, R., Gossard, A.C. and Wiegmann, W., Phys. Rev. Lett. 34, 13271330 (1975).CrossRefGoogle Scholar
16. Dohler, G.H., in: Tsakalakos, T., (ed.), Modulated Structure Materials, 509–535, (Martinus Nijhoff Publishers, Dordecht, 1984).Google Scholar
17. Dohler, G.H., Scientific American 249, 144151 (1983).CrossRefGoogle Scholar
18. Reiss, G., Hurtrez, G., and Bahadur, P., Encycl. Polym. Sci. Eng., vol. 2, 324434 (John Wiley, New York, 1985).Google Scholar
19. Noshay, A. and McGrath, J.E., Block Copolymers (Academic Press, New York, 1977).Google Scholar
20. Das Sarma, S., Kobayashi, A. and Prange, R.E., Phys. Rev. Lett. 58, 12801283 (1986).CrossRefGoogle Scholar
21. Anderson, P.W., Phys. Rev. 109, 14921505 (1958).Google Scholar
22. Kertesz, M. and Lee, Y.S., Synthetic Metals 28, C545C552 (1989).Google Scholar
23. Chen, W.C. and Jenekhe, S.A., in preparation.Google Scholar
24. Carter, F.L., ed., Molecular Electronic Devices II (Marcel Dekker, New York, 1987)Google Scholar