Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:12:53.546Z Has data issue: false hasContentIssue false

Optoelectronic characterization of morphology-controlled zinc oxide nanowires

Published online by Cambridge University Press:  04 April 2011

Shou-Yi Kuo
Affiliation:
Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan Green Technology Research Center, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan
Fang-I Lai
Affiliation:
Department of Photonics Engineering, Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li 320, Taiwan
Chun-Chieh Wang
Affiliation:
Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan
Woei-Tyng Lin
Affiliation:
Department of Photonics Engineering, Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li 320, Taiwan
Get access

Abstract

In this paper, we report the characterization of vertically aligned ZnO nanowire (NW) arrays synthesized by metal-catalyzed chemical vapor deposition. The growth mechanism of ZnO NWs may be related to vapor-solid-nucleation. Morphological, structural, optical and field emission characteristics can be modified by varying the growth time. For growth time reaches 120 min, the length and the diameter of ZnO NWs are 1.5 μm and 350 nm, and they also show preferential growth orientation along the c-axis. Moreover, strong alignment and uniform distribution of ZnO NWs can effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region as well. Field emission measurement indicated that the growth time play an important role in density- and morphology-controlled ZnO NWs, and thus ZnO NWs are expected to be used in versatile optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jiang, C. Y., Sun, X. W., Lo, G. Q., and Kwong, D. L., Wang, J. X., Appl. Phys. Lett., 90, 263501 (2007).Google Scholar
2. Xu, L., Shen, H., Li, X., and Zhu, R., Chin. Opt. Lett., 7, 953955 (2009).Google Scholar
3. Manoharan, M. P., Desai, A. V., Neely, G., and Haque, M. A., Journal of Nanomaterials, 2008, 849745 (2008).Google Scholar
4. Weissenberger, D., Gerthsen, D., Reiser, A., Prinz, G. M., Feneberg, M., Thonke, K., Zhou, H., Sartor, J., Fallert, J., Klingshirn, C., and Kalt, H., Appl. Phys. Lett., 94, 042107 (2009).Google Scholar
5. Wang, X. D., Song, J. H., Liu, J., Wang, Z. L., Science, 316,102 (2007).Google Scholar
6. Wu, J. J. and Liu, S. C., Adv. Mater., 14, 215 (2002).Google Scholar
7. Park, W. I., Kim, D. H., Jung, S. W., Yi, G. C., Appl. Phys. Lett., 80, 4232 (2002).Google Scholar
8. Hartanto, A. B., Ning, X., Nakata, Y., Okada, T., Appl. Phys. A, 78, 299 (2004).Google Scholar
9. Vayssieres, L., Keis, K., Lindquist, S. E., Hagfeldt, A., J. Phys. Chem. B, 105, 3350 (2001).Google Scholar
10. Zhang, Z., Wang, S. J., Yu, T. and Wu, T., J. Phys. Chem. C, 111, 1750017505 (2007).Google Scholar
11. Lee, C., Bae, S. Y., Mobasser, S., Manohara, H., Nano Lett., 5, 24382442 (2005).Google Scholar
12. Bai, X. D., Wang, E. G., Gao, P. X., Wang, Z. L., Nano Lett., 3, 1147 (2003).Google Scholar
13. Bai, X. D., Wang, E. G., Gao, P. X., Wang, Z. L., Nano Lett., 3, 1147 (2003).Google Scholar