Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T15:36:58.120Z Has data issue: false hasContentIssue false

Optical Characterization of Focused Ion Beam Implanted AlGaAs/GaAs Multiple Quantum Well Structures

Published online by Cambridge University Press:  21 February 2011

Howard E. Jackson*
Affiliation:
Department of Physics University of Cincinnati Cincinnati, OH 45221-0011
Get access

Abstract

Raman and both cw and time-resolved photoluminescence (PL) spectroscopy have been used to characterize 3.5nm/3.5nm Al0.30Ga0.70 As/GaAs multiple quantum well structures that have been patterned by focused ion beam (FIB) implantation followed by rapid thermal annealing (RTA). Raman scattering is used to characterize a FIB-delineated optical waveguide structure by identifying the appropriate RTA conditions that provide for removal of ion implantation induced damage in order to produce compostionally mixed regions that possess crystalline order. Spatially and temporally resolved PL spectra provide information on the degree of compositional mixing, exciton lifetime, and lateral transport. Anisotropic diffusion of excitons is observed in samples patterned with parallel line structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Useful overviews are provided by a variety of articles, including those in Spectroscopy of Semiconductor Microstructures, ed. G. Fasol, A. Fasolino, and P. Luigu, (Plenum, New York, 1989), Light Scattering in Semiconductor Structures and Superlattices, ed. D. J. Lockwood and J. F. Young, (Plenum, New York, 1991), Topics in Applied Physics, Vol. 66, ed. M. Cardona and G. Guntherodt, (Springer Verlag, New York, 1989) and the text Wave Mechanics Applied to Semiconductor Heterostructures, Bastard, G., (Halsted Press, NewYork, 1988).Google Scholar
2 Richter, H., Wang, Z. P., and Ley, L., Solid State Comm. 39, 625 (1981).Google Scholar
3 Campbell, I. H. and Fauchet, P.M., Solid State Commun. 58, 739 (1986).Google Scholar
4 P.Parayanthal, and Fred, Pollack, H., Phys. Rev. Lett. 52, 1822 (1984).Google Scholar
5 Adachi, S., J. Appl. Phys. 58, Rl (1985).Google Scholar
6 Kumar, M., Gupta, V., DeBrabander, G., Chen, P., Boyd, J. T., Steckl, A. J., Choo, A. G., Jackson, H. E.. Burnham, R. D., and Smith, S. C., IEEE Photonics Lett. 4, 435, (1993).Google Scholar
7 See, for instance, Kash, K. and Tell, B., J. Appl. Phys. 63, 190 (1988); B. Elman, Emil S. Koteles, P. Melman, and C. Armiento, J. Appl. Phys. 66, 2104 (1989).Google Scholar
8 Choo, A. G., Cao, X. L., Tlali, S., Jackson, H. E., Chen, P., Steckl, A. J.,and Boyd, J. T., this conference.Google Scholar
9 Hillmer, H., Forchel, A., Hansmann, S., Morohashi, M., Lopez, E., Meier, H. P. and Ploog, K., Phys. Rev. B39, 10901 (1989).Google Scholar
10 Smith, L. M., Preston, J. S., Wolfe, J. P., and Wake, D. R., Phys. Rev. B39, 1862 (1989).Google Scholar
11 Yoon, H. W., Wake, D. R., Wolfe, J. P., and Morkoc, H., Phys. Rev. B46, 13461 (1992).Google Scholar
12 Gilliland, G. D., Wolford, D. J., Northrop, G. A., Petrovic, M. S., Kuech, T. F., and Bradley, J. A., J.Vac. Sci. Tech. B10(4), 1959 (1992).Google Scholar
13 Mayer, G., Maile, B. E., Germann, R., Forchel, A., Grambow, P., and Meier, H. P., Appl. Phys. Lett. 56(20), 2016 (1990).Google Scholar
14 Cao, X., Choo, A. G., Smith, L. M., Jackson, H. E., Chen, P., and Steckl, A. J., this conference.Google Scholar