Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:43:50.272Z Has data issue: false hasContentIssue false

On the use of Secondary Ion Mass Spectrometry in Semiconductor Device Materials and Process Development

Published online by Cambridge University Press:  22 February 2011

Charles W. Magee
Affiliation:
RCA Laboratories, Materials Characterization Research, Princeton, NJ 08540
Ephraim M. Botnick
Affiliation:
RCA Laboratories, Materials Characterization Research, Princeton, NJ 08540
Get access

Abstract

This paper describes how secondary ion mass spectrometry can be used effectively in semiconductor device materials and process development. A short overview of the experimental technique is given followed by applications in the following areas:

1) Basic research

2) New Process Development

3) Trouble-shooting current processing

4) Analysis of competitor's devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a useful review article on SIMS see: Evans, C. A. Jr., Anal. Chem. 44 No. 13, 67A(1972).CrossRefGoogle Scholar
2. Zinner, E., Scanning 3, 57(1980).CrossRefGoogle Scholar
3. Hofmann, S., Surf. Interface Anal. 2, 148(1980).Google Scholar
4. McHugh, J. A. in “Methods of Surface Analysis”, Czanderna, A. W., Ed., Elsevier, Amsterdam, 1975, pp. 223278.Google Scholar
5. Zinner, E., J. Electrochem. Soc. 130, 199C (1983).Google Scholar
6. Storms, H. A., Brown, K. F. and Stein, J. D., Anal. Chem. 49, 2023(1977).Google Scholar
7. Andersen, C. A. and Hinthorne, J. R., Anal. Chem. 45, 1421(1973).CrossRefGoogle Scholar
8. Leta, D. P. and Morrison, G. H., Anal. Chem. 52, 514(1980).CrossRefGoogle Scholar
9. This work was performed by Mr. Gale, R. O. as part of a Ph.D. thesis project under Dr. F. J. Feigl, Dept. of Physics, Lehigh University. C. W. Magee served on Mr. Gale's thesis committee. The final summation of this work can be found in: R. Gale, F. J. Feigl, C. W. Magee and D. R. Young, J. Appl. Phys., 54, 6938 (1983).Google Scholar
10. Feigl, F. J., Young, D. R., Dimaria, D. J. and Lai, S. in “Insulation Films on Semiconductors 1981”, Schulz, M. and Pensl, P.. Eds., (Spring-Verlag, New York, 1981).Google Scholar
11. Magee, C. W. and Botnick, E. M., J. Vac. Sci. Technol. 19, 47(1983).Google Scholar
12. Benenson, R. E., Feldman, L. C. and Bagley, B. G., Nucl. Instrum. Methods 168, 547(1980).Google Scholar
13. Magee, C. W. and Harrington, W. L., Appl. Phys. Lett. 33, 193(1978).CrossRefGoogle Scholar
14. Mikkelsen, J. C., AppI. Phys. Lett. 42, 695(1983).Google Scholar
15. Abrahams, M. S. and Buiocchi, C. J., J. AppI. Phys. 45, 3315 (1974).Google Scholar
16. TEM work was performed by McGinn, J. T., Materials Characterization Research, RCA Laboratories.Google Scholar
17. Sadana, D. K., Washburn, J. and Magee, C. W., J. App. Phys. 54, 3479(1983).Google Scholar
18. Rosen, A., Caulton, M., Stabile, P., Gombar, A., Janton, W., Wu, C., Corboy, J. and Magee, C. W., IEEE Trans Microwave Theory Tech. MTT–30, 47(1982).Google Scholar
19. Cullen, G. W., Corboy, J. F. and Metzl, R., RCA Review 44, 187(1983).Google Scholar
20. Ladany, I., Smith, R. T. and Magee, C. W., J. Appl. Phys. 52, 6064(1981).Google Scholar