No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
It has been proposed that martensite is formed by heterogeneous nucleation and growth or evolves from a precursor. In order to examine these theories, high resolution X-ray diffraction experiments have been performed on In0.77Tl0.23. It is known that the transformation of the alloy is close to second order and tweed has been observed which could be a possible precursor structure. Our experimental results do show precursors but of a different nature: satellites around the 220 Bragg peak have been detected up to 15 degrees above the transformation temperature. They develop reversibly at the angular positions of the product phase. The results are not compatible with the “crest-riding-peridon” model but rather show an equilibrium two phase mixture above the transformation temperature in which the second phase is structurally equal to the product phase. We have also investigated the mechanical response of the high temperature phase and found that both shear ‘elastic constants’ soften. This result can be understood in terms of twin boundary or stacking fault motion.