Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:44:58.756Z Has data issue: false hasContentIssue false

Observation of InGaAs / Inaias Surface Quantum Wells by Photoreflectance and Photoluminescence Excitation Spectroscopies

Published online by Cambridge University Press:  21 February 2011

S. Moneger
Affiliation:
Laboratoire de Physique de la Matière, URA CNRS 358, INSA-LYON, F- 69621 Villeurbanne cedex (France)
C. Bru
Affiliation:
Laboratoire de Physique de la Matière, URA CNRS 358, INSA-LYON, F- 69621 Villeurbanne cedex (France)
T. Benyattou
Affiliation:
Laboratoire de Physique de la Matière, URA CNRS 358, INSA-LYON, F- 69621 Villeurbanne cedex (France)
G. Guillot
Affiliation:
Laboratoire de Physique de la Matière, URA CNRS 358, INSA-LYON, F- 69621 Villeurbanne cedex (France)
E. Tournie
Affiliation:
Max-Planck-Institut fur Festkörperforschung, D-70569 Stuttgart (Germany)
K. Ploog
Affiliation:
Max-Planck-Institut fur Festkörperforschung, D-70569 Stuttgart (Germany)
Get access

Abstract

The samples under study consist of strained InAs/In0.52A10.48As single quantum wells, grown on InP substrates by molecular beam epitaxy. All samples were capped by a 15 nm-thick lattice matched InGaAs layer. By photoreflectance investigations, transitions which do not arise from the strained InAs quantum well have been observed. They have been interpreted as transitions from a surface quantum well formed by the InGaAs cap layer confined between the InAlAs barrier layer on one side and the sample surface on the other side. Photoluminescence excitation on the photoluminescence peak attributed to the first level of this well has been performed at 5 K. The obtained spectra are typical of a two-dimensional system. A modelisation of this structure is proposed and theoretical calculations of the expected quantum levels have been performed and fit well with experimental results. Finally, etching of the InGaAs cap layer has been done to confirm the origin of the observed transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E. and Kane, E.O., J. Light. Technol. LT–6, 1292 (1988).Google Scholar
2 Schneider, R.P. Jr. and Wessels, B.W., Appl. Phys. Lett. 57, 1998 (1990).Google Scholar
3 Sobiesierski, Z., Clark, S.A., Williams, R.H., Tabata, A., Benyattou, T., Guillot, G., Gendry, M., Hollinger, G. and Viktorovitch, P., Appl. Phys. Lett. 58, 1863 (1991).Google Scholar
4 Meynadier, M.H., De-Miguel, J.L., Tamargo, M.C. and Nahory, R.E., Appl. Phys. Lett. 52, 302 (1988).Google Scholar
5 Tournié, E., Brandt, O. and Ploog, K., Appl. Phys. Lett. 60, 2877 (1992).Google Scholar
6 Huang, Y.S., Qiang, H., Pollak, F.H., Lee, J. and Elman, B., Phys., J. Appl. 70, 3808 (1991).Google Scholar
7 D.K.Gaskill, , Bottka, N., Aina, L. and Mattingly, M., Appl. Phys. Lett. 56, 1269 (1990).Google Scholar
8 Cohen, R.M., M.Kitamura, and Fang, Z.M., Appl. Phys. Lett. 50, 1675 (1987).Google Scholar
9 Moison, J.M., Elcess, K., Houzay, F., Marzin, J.Y., Gérard, J.M., Barthe, F. and Bensoussan, M., Phys. Rev. B 41, 12945 (1990).Google Scholar
10 Dreybrodt, J., A.Forchel, and Reithmaier, J.P., to be published in Phys. Rev. B (1993).Google Scholar
11 Shen, H., Pollak, F.H. and Tsu, R., Appl. Phys. Lett. 57, 13 (1990).Google Scholar
12 Spicer, W.E., Lindau, I., Skeath, P. and Su, C.Y., J. Vac. Sci. Technol. 17, 1019 (1980).Google Scholar