Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:40:15.627Z Has data issue: false hasContentIssue false

A Novel High Capacity, Environmental Benign Energy Storage System: Super-iron Boride Battery

Published online by Cambridge University Press:  01 February 2011

Xingwen Yu
Affiliation:
[email protected], The University of British Columbia, Chemical and Biological Engineering, 2360 East Mall, Vancouver, V6T 1Z3, Canada, +1 604-7288895
Stuart Licht
Affiliation:
[email protected], University of Massachusetts, Department of Chemistry, 100 Morrissey Blvd, Boston, MA, 02125, United States
Get access

Abstract

High electrochemical capacity of alkaline boride anodes is presented. The alkaline anodes based on transition metal borides can deliver exceptionally high discharge capacity. Over 3800 mAh/g discharge capacity is obtained for the commercial available vanadium diboride (VB2), much higher than the theoretical capacity of commonly used zinc metal (820 mAh/g) alkaline anode. Coupling with the super-iron cathodes, the novel Fe6+/B2- battery chemistry generates a matched electrochemical potential to the pervasive, conventional MnO2-Zn battery, but sustains a much higher electrochemical capacity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ovshinsky, S. R., Fetcenko, M. A. and Ross, J., Science 260, 176 (1993).Google Scholar
2. Julien, G. M., Mater. Sci. Eng. R 40, 47 (2003).Google Scholar
3. Licht, S., Wang, B. and Ghosh, S., Science 285, 1039 (1999).10.1126/science.285.5430.1039Google Scholar
4. Licht, S. and Tel-Vered, Ran, Chem. Comm. 6, 628 (2004).Google Scholar
5. Licht, S. and DeAlwis, C., J. Phys. Chem. B 110, 12394 (2006).10.1021/jp0566055Google Scholar
6. Licht, S., Yu, X. and Zheng, D., Chem. Comm. 41, 4341 (2006).Google Scholar
7. Yang, H. X., Wang, Y. D., Ai, X. P. and Cha, C. S., Electrochem. Solid-State Lett. 7, A212 (2004).Google Scholar
8. Wang, Y. D., Ai, X. P., Cao, Y. L. and Yang, H. X., Electrochem. Comm. 6, 780 (2004).Google Scholar
9. Licht, S., Yu, X. and Qu, D., Chem. Comm. 26, 2753 (2007).Google Scholar
10. Licht, S., Naschitz, V., Liu, B., Ghosh, S., Halperin, N., Halperin, L. and Rozen, D., J. Power Sources 99, 7 (2001).Google Scholar
11. Licht, S., Naschitz, V., Halperin, L., Halperin, N., Lin, L., Chen, J., Ghosh, S. and Liu, B., J. Power Sources 101, 167 (2001).Google Scholar
12. Amendola, S., U.S. Patent No. 5 948 558 (1999).Google Scholar
13. Amendola, S., U.S. Patent No. 6 468 694 (2002).Google Scholar