Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:33:48.916Z Has data issue: false hasContentIssue false

A Novel Approach for the Preparation of InP Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Zhaoyong Sun
Affiliation:
[email protected], UNIVERSITY OF NEW ORLEANS, CHEMISTRY, 2000 LAKESHORE DR, NEW ORLEANS, LA, 70148, United States
Jun Zhang
Affiliation:
[email protected], UNIVERSITY OF NEW ORLEANS, NEW ORLEANS, LA, 70148, United States
Ming Zhang
Affiliation:
[email protected], UNIVERSITY OF NEW ORLEANS, NEW ORLEANS, LA, 70148, United States
Jiye Fang
Affiliation:
[email protected], UNIVERSITY OF NEW ORLEANS, NEW ORLEANS, LA, 70148, United States
Get access

Abstract

III-V semiconductor nanocrystals are of considerable interest due to their extensive applications in the optoelectronic and biomedical fields. In order to meet the practical use, the convenient and scalable production of III-V narrow-disperse nanocrystals is inspiring. We report an efficient and rapid method of preparing highly monodisperse InP nanocrystals using a wet-chemical redox synthetic approach with a noncoordinating solvent, employing organic reducing agent LiBH(CH2CH3)3 and yellow phosphor. As advantages of this approach, reaction temperature is relatively low (80°C-120°C) and reaction time is less than 2 hours. Our characterization shows that the photoluminescence properties of InP nanocrystals are highly dependent on the particle size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115 (19), 8706 (1993).Google Scholar
2 Colvin, V. L., Schlamp, M. C., Alivisatos, A. P., Nature 370 (6488), 354 (1994).Google Scholar
3 Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P., Science 281 (5385), 2013 (1998).Google Scholar
4 Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A. P., Nature 404 (6773), 59 (2000).Google Scholar
5 Qu, L. and Peng, X., J. Am. Chem. Soc. 124 (9), 2049 (2002).Google Scholar
6 Didenko, Y. T. and Suslick, K. S., J. Am. Chem. Soc. 127 (35), 12196 (2005).Google Scholar
7 Wells, R. L., Pitt, C. G., Mcphail, A. T., Purdy, A. P., Shafieezad, S., Hallock, R. B., Chem. Mater. 1 (1), 4 (1989).Google Scholar
8 Guzelian, A. A., J. Katari, E. B., Kadavanich, A. V., Banin, U., Hamad, K., Juban, E., Alivisatos, A. P., Wolters, R. H., Arnold, C. C., Heath, J. R., J. Phys. Chem 100 (17), 7212 (1996).Google Scholar
9 Micic, O. I., Cheong, H. M., Fu, H., Zunger, A., Sprague, J. R., Mascarenhas, A., Nozik, A. J., J. Phys. Chem. B 101, 4904 (1997).Google Scholar
10 Battaglia, D. and Peng, X., Nano. Lett 2 (9), 1027 (2002).Google Scholar
11 Furis, M., MacRae, D. J., Lucey, D. W., Sahoo, Y., Cartwright, A. N., Prasad, P. N., Mat. Res. Soc. Symp. Proc. 789, N3.35.1 (2004).Google Scholar
12 Sun, S. and Murray, C. B., Journal of Applied Physics 85 (8), 4325 (1999).Google Scholar
13 Micic, O. I., Sprague, J., Jones, K. M., Sprague, J. R., Nozik, A. J., Appl. Phys. Lett. 68 (22), 3150 (1996).Google Scholar
14 Langof, L., Ehrenfreund, E., Lifshitz, E., J. Phys. Chem. B 106, 1606 (2002).Google Scholar
15 Talapin, D. V., Gaponik, N., Borcvhert, H., Rogach, A. L., Haase, M., Weller, H., J. Phys. Chem. B 106, 12659 (2002).Google Scholar
16 Fu, H. and Zunger, A., Phys. Rev. B 56 (3), 1496 (1997)Google Scholar