Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:26:57.614Z Has data issue: false hasContentIssue false

Nonvolatile Carbon Nanotube Memory Device With Molecular Charge Storage

Published online by Cambridge University Press:  01 February 2011

Volker J. Sorger
Affiliation:
[email protected], University of Texas, Austin, Department of Physics, Center for Nano- and Molecular Science and Technology & Texas Materials Inst., 1 University Station C1600, Austin, Texas, 78712-0264, United States
Zhen Yao
Affiliation:
[email protected], University of Texas at Austin, Department of Physics, Center for Nano- and Molecular Science and Technology & Texas Materials Inst., 1 University Station C1600, Austin, Texas, 78712-0264, United States
Get access

Abstract

Nanoscale, non-volatile, multi-bit memory devices have been fabricated consisting of carbon nanotube field-effect transistors (CNT-FETs) surrounded by redox active molecules (cobalt porphyrin). Charge was stored in the cobalt center atom of the molecule. Write and erase programming was carried out with back-gate pulses. By varying the back-gate amplitude multi-level memory operation was achieved. Programmed devices were read at zero gate voltage showing distinct logic ON and OFF states at room temperature for several hours. At low temperatures strong increase in retention time was observed and single-electron sensitivity was demonstrated. Charge stability tests show insignificant device change after 105 write and erase cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fuhrer, M. S., Kim, B. M., Durkop, T. and Brintlinger, T., Nano Lett. 2, 755 (2002).Google Scholar
2 Radosavljevic, M., Freitag, M., Thadani, K. V. and Johnson, A. T., Nano Lett. 2, 761 (2002).Google Scholar
3 Cui, J. B., Sordan, R., Burghard, M. and Kern, K., Appl. Phys. Lett. 81, 3260 (2002).Google Scholar
4 Tans, S. J., Verschueren, R. M. and Dekker, C., Nature 393, 49 (1998); R. Martel, T. Schmidt, Shea, H. R., T. Hertel and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
5 Durkop, T., Getty, S., Cobas, E. and Fuhrer, M. S., Nano Lett. 4, 35 (2004).Google Scholar
6 Kong, J., Soh, H., Cassell, A., Quate, C. F. and Dai, H., Nature 395, 878 (1998).Google Scholar
7 Jayey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H., Nature 424, 654 (2003).Google Scholar
8 Duan, X., Huang, Y. and Lieber, C. M., Nano Lett. 2, 487 (2002).Google Scholar
9 Li, C., Fan, W., Straus, D. A., Lei, B., Asano, S., Zhang, D., Han, J., Meyyappan, M. and Zhou, C., J. Am. Chem. Soc. 108, 9646 (2004).Google Scholar
10 Ricco, B., Torelli, G., Lanzoni, M., Manstretta, A., Maes, H. E., Montanari, D., and Modelli, A., Proc. IEEE 86, 2399 (1998).Google Scholar
11 Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y. and Dai, H., Nano Lett. 3, 193 (2003).Google Scholar
12 Ganguly, U., Kan, E., Y, Zhang., Appl. Phys. Lett. 87, 043108 (2005); W. B. Choi, S. Chae, E. Bae, J.-W. Lee, B.-H. Cheong, J.-R. Kim and J.J. Kim, Appl. Phys. Lett. 82, 275 (2003).Google Scholar
13 Guo, J., Kan, E, Ganguly, U and Zhang, Y., J. App. Physics 99, 1 (2006) accepted 02//2006Google Scholar
14 Blauwe, J. De, Ostraat, M., Green, M., Weber, G., Sorsch, T., Kerber, A., Klemens, F., Cirelli, R., Ferry, E., Grazul, J., Baumann, F., Kim, Y., Mansfield, W., Bude, J., Lee, J., Hillenius, S., Flagan, R. and Atwater, H., IEDM Tech. Dig. 683 (2000).Google Scholar
15 Molas, G., Salvo, B. De, Ghibaudo, G., Mariolle, D., Toffoli, A., Buffet, N., Puglisi, R., Lombardo, S. and Deleonibus, S., IEEE Trans. Nanotech. 3, 42 (2004).Google Scholar
16 Kim, D., Kim, T. and Banerjee, S. K., IEEE Trans. Electron Devices 50, 1823 (2003).Google Scholar