No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We describe a fabrication method to prepare highly ordered Si nanopore arrays. A nanoporous alumina template of thickness ∼1μm is prepared by means of anodization of an aluminum film. The template has a highly ordered hexagonal array of pores of diameter ∼50nm. The template is detached from the aluminum layer and placed on a Si substrate. The nanoporous pattern is transferred onto silicon substrate by means of a dry plasma etch process. This produces an array of nanopores in silicon with a diameter of ∼50nm and depth of ∼300nm. We have used such an array to prepare Fe nanopillars inside the pores by means of thermal evaporation. Magnetization versus applied magnetic field measurements for the Fe nanoarrays, demonstrate large perpendicular anisotropy typical of high aspect ratio magnetic nanopillars. The value of coercivity is about 500Oe in the perpendicular direction and 40Oe in the parallel direction.